Machine Learning and Data Mining

Nearest neighbor methods

Prof. Alexander Ihler
Supervised learning

- Notation
 - Features x
 - Targets y
 - Predictions \hat{y}
 - Parameters θ

Program ("Learner")
Characterized by some "parameters" θ
Procedure (using θ) that outputs a prediction

Learning algorithm
Change θ
Improve performance

Training data (examples)
Features
Feedback / Target values

Score performance ("cost function")
Regression; Scatter plots

- Suggests a relationship between x and y
- Regression: given new observed $x^{(new)}$, estimate $y^{(new)}$
Nearest neighbor regression

Find training datum $x^{(i)}$ closest to $x^{(\text{new})}$; predict $y^{(i)}$

“Predictor”:
Given new features: Find nearest example Return its value
Nearest neighbor regression

- Find training datum $x^{(i)}$ closest to $x^{(new)}$; predict $y^{(i)}$
- Defines an (implicit) function $f(x)$
- "Form" is piecewise constant

“Predictor”:
Given new features:
Find nearest example
Return its value
Nearest neighbor classifier

“Predictor”:
Given new features:
Find nearest example
Return its value
Nearest neighbor classifier

“Predictor”:
Given new features:
Find nearest example
Return its value

“Closest” training x?
Typically Euclidean distance:

$$d(x, x') = \sqrt{\sum_i (x_i - x'_i)^2}$$
Nearest neighbor classifier

All points where we decide 1

Decision Boundary

All points where we decide 0

X₁ →

X₂ →
Nearest neighbor classifier

Voronoi tessellation: Each datum is assigned to a region, in which all points are closer to it than any other datum

Decision boundary: Those edges across which the decision (class of nearest training datum) changes
Nearest neighbor classifier

Nearest Nbr:
Piecewise linear boundary
More Data Points
In general: Nearest-neighbor classifier produces piecewise linear decision boundaries.
Machine Learning and Data Mining

Nearest neighbor methods:
K-Nearest Neighbors

Prof. Alexander Ihler
K-Nearest Neighbor (kNN) Classifier

- Find the k-nearest neighbors to x in the data
 - i.e., rank the feature vectors according to Euclidean distance
 - select the k vectors which are have smallest distance to x

- Regression
 - Usually just average the y-values of the k closest training examples

- Classification
 - ranking yields k feature vectors and a set of k class labels
 - pick the class label which is most common in this set (“vote”)
 - classify x as belonging to this class
 - Note: for two-class problems, if k is odd ($k=1, 3, 5, \ldots$) there will never be any “ties”

- “Training” is trivial: just use training data as a lookup table, and search to classify a new datum
kNN Decision Boundary

- Piecewise linear decision boundary
- Increasing k “simplifies” decision boundary
 - Majority voting means less emphasis on individual points

$K = 1$ \hspace{1cm} $K = 3$
kNN Decision Boundary

- Recall: piecewise linear decision boundary
- Increasing k “simplifies” decision boundary
 - Majority voting means less emphasis on individual points

$K = 5$

$K = 7$
kNN Decision Boundary

- Recall: piecewise linear decision boundary
- Increasing k “simplifies” decision boundary
 - Majority voting means less emphasis on individual points
Error rates and K

<table>
<thead>
<tr>
<th>K</th>
<th>Error on Training Data</th>
<th>Error on Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zero error!</td>
<td>Training data have been memorized...</td>
</tr>
</tbody>
</table>

Best value of K
Complexity & Overfitting

- Complex model predicts all training points well
- Doesn’t generalize to new data points
- $K=1$: perfect memorization of examples (complex)
- $K=M$: always predict majority class in dataset (simple)
- Can select K using validation data, etc.

Too complex

simpler

K (# neighbors)

K (# neighbors)
K-Nearest Neighbor (kNN) Classifier

• Theoretical Considerations
 – as k increases
 • we are averaging over more neighbors
 • the effective decision boundary is more “smooth”
 – as N increases, the optimal k value tends to increase
 – k=1, m increasing to infinity: error < 2x optimal

• Extensions of the Nearest Neighbor classifier
 – weighted distances
 • e.g., if some of the features are more important
 • e.g., if features are irrelevant
 \[d(x, x') = \sqrt{\sum_i w_i(x_i - x'_i)^2} \]
 – fast search techniques (indexing) to find k-nearest neighbors in d-space
Summary

• K-nearest neighbor models
 – Classification (vote)
 – Regression (average or weighted average)

• Piecewise linear decision boundary
 – How to calculate

• Test data and overfitting
 – Model “complexity” for knn
 – Use validation data to estimate test error rates & select k