Machine Learning and Data Mining

Dimensionality Reduction;
PCA & SVD

Prof. Alexander Ihler
Motivation

- High-dimensional data
 - Images of faces
 - Text from articles
 - All S&P 500 stocks

- Can we describe them in a “simpler” way?

- Ex: S&P 500 – vector of 500 (change in) values per day
 - But, lots of structure
 - Some elements tend to “change together”
 - Maybe we only need a few values to approximate it?
 - “Tech stocks up 2x, manufacturing up 1.5x, …”?

- How can we access that structure?
Dimensionality reduction

- Ex: data with two real values \([x_1, x_2]\)
- We’d like to describe each point using only one value \([z_1]\)
- We’ll communicate a “model” to convert: \([x_1, x_2] \sim f(z_1)\)

- Ex: linear function \(f(z):\) \([x_1, x_2] = z \ast v = z \ast [v_1, v_2]\)
- \(v\) is the same for all data points (communicate once)
- \(z\) tells us the closest point on \(v\) to the original point \([x_1, x_2]\)
Principal Components Analysis

What is the vector that would most closely reconstruct X?

$$\min_{a,v} \sum_i (x^{(i)} - a^{(i)} v)^2$$

- Given v: $a^{(i)}$ is the projection of each point $x^{(i)}$ onto v
- v chosen to minimize the residual variance
- Equivalently, v is the direction of maximum variance
- Extensions: best two dimensions: $x_i = a_i v + b_i w + m$
Geometry of the Gaussian

\[\Delta^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) \]

Oval shows constant \(\Delta^2 \) value…

\[\Sigma = U \Lambda U^T \]

Write \(\Sigma \) in terms of eigenvectors…

\[\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} u_i u_i^T \]

Then…

\[\Delta^2 = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i} \]

\[y_i = u_i^T (x - \mu) \]
PCA representation

- Subtract data mean from each point
- (Typically) scale each dimension by its variance
 - Helps pay less attention to magnitude of the variable
- Compute covariance matrix, \(S = \frac{1}{m} \sum (x_i - \mu)' (x_i - \mu) \)
- Compute the k largest eigenvectors of S
 \(S = V D V^T \)

```
mu = np.mean( X, axis=0, keepdims=True )  # find mean over data points
X0 = X - mu  # zero-center the data
S = X0.T.dot( X0 ) / m  # S = np.cov( X.T ), data covariance
D,V = np.linalg.eig( S )  # find eigenvalues/vectors: can be slow!
pi = np.argsort(D)[::-1]  # sort eigenvalues largest to smallest
D,V = D[pi], V[:,pi]  #
D,V = D[0:k], V[:,0:k]  # and keep the k largest
```
Singular Value Decomposition

- Alternative method to calculate (still subtract mean 1st)
- Decompose \(X = U S V^T \)
 - Orthogonal: \(X^T X = V S S V^T = V D V^T \)
 - \(X X^T = U S S U^T = U D U^T \)
- \(U*S \) matrix provides coefficients
 - Example \(x_i = U_{i,1} S_{11} v_1 + U_{i,2} S_{22} v_2 + \ldots \)
- Gives the least-squares approximation to \(X \) of this form

\[
\begin{align*}
X & \approx U S V^T \\
& \begin{array}{c}
\begin{array}{c}
X \\
m \times n
\end{array} \\
& \begin{array}{c}
U \\
m \times k
\end{array} \\
& \begin{array}{c}
S \\
k \times k
\end{array} \\
& \begin{array}{c}
V^T \\
k \times n
\end{array}
\end{array}
\end{align*}
\]
SVD for PCA

- Subtract data mean from each point
- (Typically) scale each dimension by its variance
 - Helps pay less attention to magnitude of the variable
- Compute the SVD of the data matrix

```python
mu = np.mean(X, axis=0, keepdims=True)  # find mean over data points
X0 = X - mu  # zero-center the data

U,S,Vh = scipy.linalg.svd(X0, False)  # X0 = U * diag(S) * Vh

Xhat = U[:,0:k].dot( np.diag(S[0:k]) ).dot( Vh[0:k,:] )  # approx using k largest eigendir
```
“Eigen-faces”

- “Eigen-X” = represent X using PCA
- Ex: Viola Jones data set
 - 24x24 images of faces = 576 dimensional measurements
“Eigen-faces”

- “Eigen-X” = represent X using PCA
- Ex: Viola Jones data set
 - 24x24 images of faces = 576 dimensional measurements
 - Take first K PCA components

\[
X = \begin{pmatrix}
X_{1,1} & \cdots & X_{1,n} \\
\vdots & \ddots & \vdots \\
X_{m,1} & \cdots & X_{m,n}
\end{pmatrix}
\]

\[
U_{m \times k} \quad S_{k \times k} \quad V^T_{k \times n}
\]

Mean

V[0,:]

V[1,:]

V[2,:]

V[3,:]

\[
X \approx U S V^T
\]
“Eigen-faces”

- “Eigen-X” = represent X using PCA
- Ex: Viola Jones data set
 - 24x24 images of faces = 576 dimensional measurements
 - Take first K PCA components

Mean Dir 1 Dir 2 Dir 3 Dir 4 …
K=4 K=4 K=50 K=4 K=50 …
Rain and chilly weather didn't keep thousands of paradegoers from camping out Friday night for the 111th Tournament of Roses.

Spirits were high among the street party crowd as they set up for curbside seats for today's parade.

``I want to party all night,'' said Tyne Gaudielle, 15, of Glendale, who spent the last night of the year along Colorado Boulevard with a group of friends.

Whether they came for the partying or the parade, campers were in for a long night. Rain continued into the evening and temperatures were expected to dip down into the low 40s.
Text representations

- "Bag of words"
 - Remember word counts but not order

- Example:

 Rain and chilly weather didn't keep thousands of paradegoers from camping out Friday night for the 111th Tournament of Roses.

 Spirits were high among the street party crowd as they set up for curbside seats for today's parade.

 "I want to party all night," said Tyne Gaudielle, 15, of Glendale, who spent the last night of the year along Colorado Boulevard with a group of friends.

 Whether they came for the partying or the parade, campers were in for a long night. Rain continued into the evening and temperatures were expected to dip down into the low 40s.
Text representations

• “Bag of words”
 – Remember word counts but not order

• Example:

VOCABULARY:
0001 ability
0002 able
0003 accept
0004 accepted
0005 according
0006 account
0007 accounts
0008 accused
0009 act
0010 acting
0011 action
0012 active

<table>
<thead>
<tr>
<th>DOC #</th>
<th>WORD #</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>127</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>166</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>176</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>187</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>192</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>198</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>356</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>374</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>381</td>
<td>2</td>
</tr>
</tbody>
</table>

....
Latent Semantic Indexing (LSI)

- PCA for text data
- Create a giant matrix of words in docs
 - “Word j appears” = feature x_j
 - “in document i” = data example I
- Huge matrix (mostly zeros)
 - Typically normalize by e.g. sum over j to control for short docs
 - Typically don’t subtract mean or normalize by variance
 - Might transform counts in some way (log, etc)
- PCA on this matrix provides a new representation
 - Document comparison
 - Fuzzy search (“concept” instead of “word” matching)
Matrices are big, but data are sparse

- **Typical example:**
 - Number of docs, $D \sim 10^6$
 - Number of unique words in vocab, $W \sim 10^5$
 - FULL Storage required $\sim 10^{11}$
 - Sparse Storage required $\sim 10^9$

- **DxW matrix (# docs x # words)**
 - Looks dense, but that’s just plotting
 - Each entry is non-negative
 - Typically integer / count data
Latent Semantic Indexing (LSI)

• What do the principal components look like?

PRINCIPAL COMPONENT 1
- 0.135 genetic
- 0.134 gene
- 0.131 snp
- 0.129 disease
- 0.126 genome_wide
- 0.117 cell
- 0.110 variant
- 0.109 risk
- 0.098 population
- 0.097 analysis
- 0.094 expression
- 0.093 gene_expression
- 0.092 gwas
- 0.089 control
- 0.088 human
- 0.086 cancer
Latent Semantic Indexing (LSI)

- What do the principal components look like?

<table>
<thead>
<tr>
<th>PRINCIPAL COMPONENT 1</th>
<th>PRINCIPAL COMPONENT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.135 genetic</td>
<td>0.247 snp</td>
</tr>
<tr>
<td>0.134 gene</td>
<td>-0.196 cell</td>
</tr>
<tr>
<td>0.131 snp</td>
<td>0.187 variant</td>
</tr>
<tr>
<td>0.129 disease</td>
<td>0.181 risk</td>
</tr>
<tr>
<td>0.126 genome_wide</td>
<td>0.180 gwas</td>
</tr>
<tr>
<td>0.117 cell</td>
<td>0.162 population</td>
</tr>
<tr>
<td>0.110 variant</td>
<td>0.162 genome_wide</td>
</tr>
<tr>
<td>0.109 risk</td>
<td>0.155 genetic</td>
</tr>
<tr>
<td>0.098 population</td>
<td>0.130 loci</td>
</tr>
<tr>
<td>0.097 analysis</td>
<td>-0.116 mir</td>
</tr>
<tr>
<td>0.094 expression</td>
<td>-0.116 expression</td>
</tr>
<tr>
<td>0.093 gene_expression</td>
<td>0.113 allele</td>
</tr>
<tr>
<td>0.092 gwas</td>
<td>0.108 schizophrenia</td>
</tr>
<tr>
<td>0.089 control</td>
<td>0.107 disease</td>
</tr>
<tr>
<td>0.088 human</td>
<td>-0.103 mirnas</td>
</tr>
<tr>
<td>0.086 cancer</td>
<td>-0.099 protein</td>
</tr>
</tbody>
</table>

Q: But what does -0.196 cell mean?
Collaborative filtering (Netflix)

From Y. Koren of BellKor team
Latent space models

Model ratings matrix as "user" and "movie" positions

Infer values from known ratings

Extrapolate to unranked

From Y. Koren of BellKor team
Latent space models

From Y. Koren of BellKor team

“Chick flicks”? Serious

The Color Purple Braveheart

Sense and Sensibility Lethal Weapon

The Princess Diaries Ocean’s 11

The Lion King Independence Day

escapist
Some SVD dimensions

Dimension 1
Offbeat / Dark-Comedy
- Lost in Translation
- The Royal Tenenbaums
- Dogville
- Eternal Sunshine of the Spotless Mind
- Punch-Drunk Love

Mass-Market / 'Beniffer' Movies
- Pearl Harbor
- Armageddon
- The Wedding Planner
- Coyote Ugly
- Miss Congeniality

Dimension 2
Good
- VeggieTales: Bible Heroes: Lions
- The Best of Friends: Season 3
- Felicity: Season 2
- Friends: Season 4
- Friends: Season 5

Twisted
- The Saddest Music in the World
- Wake Up
- I Heart Huckabees
- Freddy Got Fingered
- House of 1

Dimension 3
What a 10 year old boy would watch
- Dragon Ball Z: Vol. 17: Super Saiyan
- Battle Athletes Victory: Vol. 4: Spaceward Ho!
- Battle Athletes Victory: Vol. 5: No Looking Back
- Battle Athletes Victory: Vol. 7: The Last Dance
- Battle Athletes Victory: Vol. 2: Doubt and Conflict

What a liberal woman would watch
- Fahrenheit 9/11
- The Hours
- Going Upriver: The Long War of John Kerry
- Sex and the City: Season 2
- Bowling for Columbine
Latent space models

- Latent representation encodes some “meaning”
- What kind of movie is this? What movies is it similar to?

- Matrix is full of missing data
 - Hard to take SVD directly
 - Typically solve using gradient descent
 - Easy algorithm (see Netflix challenge forum)

```python
# for user u, movie m, find the kth eigenvector & coefficient by iterating:
predict_um = U[m,:].dot( V[:,u] )  # predict: vector-vector product
err = ( rating[u,m] – predict_um )  # find error residual
V_ku, U_mk = V[k,u], U[m,k]    # make copies for update
U[m,k] += alpha * err * V_ku  # Update our matrices
V[k,u] += alpha * err * U_mk  # (compare to least-squares gradient)
```
Nonlinear latent spaces

- Latent space
 - Any alternative representation (usually smaller) from which we can (approximately) recover the data

- Ex: Auto-encoders
 - Use neural network with few internal nodes
 - Train to “recover” the input “x”

- Related: word2vec
 - trains an NN to recover the context of words; use internal hidden node responses as a vector representation of the word

- Also: Boltzmann machines
 - Probabilistic mixture model to explain features “x”
Summary

• Dimensionality reduction
 – Representation: basis vectors & coefficients

• Linear decomposition
 – PCA / eigendecomposition
 – Singular value decomposition

• Examples and data sets
 – Face images
 – Text documents (latent semantic indexing)
 – Movie ratings