Bayesian Networks

CS171, Fall 2016
Introduction to Artificial Intelligence
Prof. Alexander Ihler

Reading: R&N Ch 14
Why Bayesian Networks?

- Knowledge Representation & Reasoning (Inference)
 - Propositional Logic
 - Knowledge Base: Propositional logic sentences
 - Reasoning: KB |= Theory
 - Find a model or Count models
 - Probabilistic Reasoning
 - Knowledge Base: Full joint probability over all random variables
 - Reasoning: Compute Pr (KB |= Theory)
 - Find the most probable assignments
 - Compute marginal / conditional probability

- Why Bayesian Net?
 - Manipulating full joint probability distribution is very hard!
 - Exploit conditional independence properties of our distribution
 - Bayesian Network captures conditional independence
 - Graphical Representation (Probabilistic Graphical Models)
 - Tool for Reasoning, Computation (Probabilistic Reasoning bases on the Graph)
Conditional independence

- Recall: chain rule of probability
 - $p(x,y,z) = p(x) \ p(y|x) \ p(z|x,y)$

- Some of these models will be conditionally independent
 - e.g., $p(x,y,z) = p(x) \ p(y|x) \ p(z|x)$

- Some models may have even more independence
 - E.g., $p(x,y,z) = p(x) \ p(y) \ p(z)$
Bayesian networks

• Directed graphical model
• Nodes associated with variables
• “Draw” independence in conditional probability expansion
 — Parents in graph are the RHS of conditional

• Ex: \(p(x, y, z) = p(x) \ p(y \mid x) \ p(z \mid y) \)

\[
\begin{array}{ccc}
 \text{x} & \rightarrow & \text{y} \\
 \rightarrow & \text{z}
\end{array}
\]

• Ex: \(p(a, b, c, d) = p(a) \ p(b \mid a) \ p(c \mid a, b) \ p(d \mid b) \)

\[
\begin{array}{ccc}
 \text{a} & \rightarrow & \text{b} \\
 \rightarrow & \text{d} \\
 \rightarrow & \text{c} \\
\end{array}
\]

Graph must be acyclic

Corresponds to an order over the variables (chain rule)
Example

Consider the following 5 binary variables:
- B = a burglary occurs at your house
- E = an earthquake occurs at your house
- A = the alarm goes off
- J = John calls to report the alarm
- M = Mary calls to report the alarm

What is P(B | M, J) ? (for example)

We can use the full joint distribution to answer this question

- Requires $2^5 = 32$ probabilities

- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?
Constructing a Bayesian network

• Order the variables in terms of causality (may be a partial order)
 – e.g., \{ E, B \} \rightarrow \{ A \} \rightarrow \{ J, M \}

• Now, apply the chain rule, and simplify based on assumptions

\[
p(J, M, A, E, B) = p(E, B) \ p(A | E, B) \ p(J, M | A, E, B)
\]
\[
= p(E) \ p(B) \ p(A | E, B) \ p(J, M | A)
\]
\[
= p(E) \ p(B) \ p(A | E, B) \ p(J | A) \ p(M | A)
\]

 – These assumptions are reflected in the graph structure of the Bayesian network
Constructing a Bayesian network

- Given \(p(J, M, A, E, B) = p(E) \ p(B) \ p(A | E, B) \ p(J | A) \ p(M | A) \)
- Define probabilities: \(1 + 1 + 4 + 2 + 2\)
- Where do these come from?
 - Expert knowledge; estimate from data; some combination

<table>
<thead>
<tr>
<th>P(E)</th>
<th>0.002</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(B)</td>
<td>0.001</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>P(J</td>
</tr>
<tr>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0.90</td>
</tr>
<tr>
<td>A</td>
<td>P(M</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>1</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Constructing a Bayesian network

- **Joint distribution**

Full joint distribution: $2^5 = 32$ probabilities

Structured distribution: specify 10 parameters

<table>
<thead>
<tr>
<th>E</th>
<th>B</th>
<th>A</th>
<th>J</th>
<th>M</th>
<th>P(…)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.93674</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.00133</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.00005</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>.00000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.00003</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.00002</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.00003</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.00000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.00946</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.00001</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.00000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>.00000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.00007</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.00004</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>.00007</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.00000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.00050</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.00000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.00000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>.00000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.00063</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.00037</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>.00059</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.00000</td>
</tr>
</tbody>
</table>
The “alarm” network: 37 variables, 509 parameters (rather than $2^{37} = 10^{11}$!)
Network structure and ordering

- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E
Network structure and ordering

- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E

- “Non-causal” ordering
 - Deciding independence is harder
 - Selecting probabilities is harder
 - Representation is less efficient

$$1 + 2 + 4 + 2 + 4 = 13$$ probabilities
Network structure and ordering

- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E

- “Non-causal” ordering
 - Deciding independence is harder
 - Selecting probabilities is harder
 - Representation is less efficient

- Some orders may not reveal any independence!

\[p(J, M, A, E, B) = p(M) p(J|M) p(E|M, J) p(B|M, J, E) p(A|M, J, E, B) \]
Reasoning in Bayesian networks

• Suppose we observe J
 – Observing J makes A more likely
 – A being more likely makes B more likely

• Suppose we observe A
 – Makes M more likely

• Observe A and J?
 – J doesn’t add anything to M
 – Observing A makes J, M independent

• How can we read independence directly from the graph?
Reasoning in Bayesian networks

• How are J, M related given A?
 - \(P(M) = 0.0117 \)
 - \(P(M|A) = 0.7 \)
 - \(P(M|A,J) = 0.7 \)
 - Conditionally independent

 (we actually know this by construction!)

• Proof:

\[
p(J, M | a) \propto \sum_{e,b} p(e) \ p(b) \ p(a|e,b) \ p(J|a) \ p(M|a)
\]

\[
= \left(\sum_{e,b} p(e, b, a) \right) \ p(J|a) \ p(M|a)
\]

\[
= p(a) \ p(J|a) \ p(M|a)
\]

\[
= c_a \ f_a(J) \ g_a(M)
\]
Reasoning in Bayesian networks

- How are J,B related given A?
 - $P(B) = 0.001$
 - $P(B|A) = 0.3735$
 - $P(B|A,J) = 0.3735$
 - Conditionally independent

- Proof:

$$p(J, B|a) \propto \sum_{e, m} p(e) \ p(B) \ p(a|e, B) \ p(J|a) \ p(m|a)$$

$$= \left(\sum_{e} p(e, B, a) \right) \ p(J|a) \ \left(\sum_{m} p(m|a) \right)$$

$$= p(B, a) \ p(J|a)$$

$$= f_{a}(B) \ g_{a}(J)$$
Reasoning in Bayesian networks

- How are E, B related?
 - $P(B) = 0.001$
 - $P(B|E) = 0.001$
 - (Marginally) independent

- What about given A?
 - $P(B|A) = 0.3735$
 - $P(B|A,E) = 0.0032$
 - Not conditionally independent!
 - The “causes” of A become coupled by observing its value
 - Sometimes called “explaining away”
D-Separation

• Prove sets X,Y independent given Z?
• Check all *undirected* paths from X to Y
• A path is “inactive” if it passes through:
 1. A “chain” with an observed variable
 2. A “split” with an observed variable
 3. A “vee” with only *unobserved* variables below it
• If all paths are inactive, conditionally independent!
A node is conditionally independent of all other nodes in the network given its Markov blanket (in gray).
Graphs and Independence

- Graph structure allows us to infer independence in $p(.)$
 - X,Y d-separated given Z?

- Adding edges
 - Fewer independencies inferred, but still valid to represent $p(.)$
 - Complete graph: can represent any distribution $p(.)$

| E | A | $P(J | E,A)$ |
|----|----|-------------|
| 0 | 0 | 0.05 |
| 0 | 1 | 0.90 |
| 1 | 0 | 0.05 |
| 1 | 1 | 0.90 |

| E | B | $P(A | E,B)$ |
|----|----|-------------|
| 0 | 0 | 0.001 |
| 0 | 1 | 0.29 |
| 1 | 0 | 0.94 |
| 1 | 1 | 0.95 |

| A | $P(M | A)$ |
|----|-----------|
| 0 | 0.01 |
| 1 | 0.70 |
Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents \(U_1 \ldots U_k \) include all causes (can add leak node)
2) Independent failure probability \(q_i \) for each cause alone
 \[P(X|U_1 \ldots U_j, \neg U_{j+1} \ldots \neg U_k) = 1 - \prod_{i=1}^{j} q_i \]

<table>
<thead>
<tr>
<th>Cold</th>
<th>Flu</th>
<th>Malaria</th>
<th>(P(\text{Fever}))</th>
<th>(P(\neg \text{Fever}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.98</td>
<td>0.02 = 0.2 \times 0.1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.94</td>
<td>0.06 = 0.6 \times 0.1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.88</td>
<td>0.12 = 0.6 \times 0.2</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.988</td>
<td>0.012 = 0.6 \times 0.2 \times 0.1</td>
</tr>
</tbody>
</table>

Number of parameters linear in number of parents
Naïve Bayes Model

\[P(C | X_1,\ldots,X_n) = \alpha \prod P(X_i | C) \cdot P(C) \]

Features X are conditionally independent given the class variable C

Widely used in machine learning
 e.g., spam email classification: X’s = counts of words in emails

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data
Naïve Bayes Model (2)

\[P(C | X_1, \ldots X_n) = \alpha \prod P(X_i | C) \cdot P(C) \]

<Learning Naïve Bayes Model>

Probabilities \(P(C) \) and \(P(X_i | C) \) can easily be estimated from labeled data

\[
P(C = c_j) \approx \frac{\#(\text{Examples with class label } c_j)}{\#(\text{Examples})}
\]

\[
P(X_i = x_{ik} | C = c_j) \approx \frac{\#(\text{Examples with } X_i \text{ value } x_{ik} \text{ and class label } c_j)}{\#(\text{Examples with class label } c_j)}
\]

Usually easiest to work with logs

\[
\log [P(C | X_1, \ldots X_n)] = \log \alpha + \sum [\log P(X_i | C) + \log P(C)]
\]

DANGER: Suppose ZERO examples with \(X_i \) value \(x_{ik} \) and class label \(c_j \)? An unseen example with \(X_i \) value \(x_{ik} \) will NEVER predict class label \(c_j \)!

Practical solutions: Pseudocounts, e.g., add 1 to every \#() , etc.

Theoretical solutions: Bayesian inference, beta distribution, etc.
Hidden Markov Models

- Two key assumptions
 - Hidden state sequence is Markov
 - Observations o_t is conditionally independent given state x_t

- Widely used in:
 - speech recognition, protein sequence models, ...

- Bayesian network is a tree, so inference is linear in n
 - Exploit graph structure for efficient computation (as in CSPs)
You should know...

• Basic concepts and vocabulary of Bayesian networks.
 – Nodes represent random variables.
 – Directed arcs represent (informally) direct influences.
 – Conditional probability tables, \(P(X_i \mid \text{Parents}(X_i)) \).

• Given a Bayesian network:
 – Write down the full joint distribution it represents.

• Given a full joint distribution in factored form:
 – Draw the Bayesian network that represents it.

• Given a variable ordering and some background assertions of conditional independence among the variables:
 – Write down the factored form of the full joint distribution, as simplified by the conditional independence assertions.
Summary

• Bayesian networks represent a joint distribution using a graph

• The graph encodes a set of conditional independence assumptions

• Answering queries (or inference or reasoning) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities

• Probabilistic inference is intractable in the general case
 – But can be carried out in linear time for certain classes of Bayesian networks