Machine Learning and Data Mining

Ensembles of Learners

Prof. Alexander Ihler
Ensemble methods

• Why learn one classifier when you can learn many?

• Ensemble: combine many predictors
 – (Weighted) combinations of predictors
 – May be same type of learner or different

“Who wants to be a millionaire?”

Various options for getting help:
Simple ensembles

- “Committees”
 - Unweighted average / majority vote

- Weighted averages
 - Up-weight “better” predictors
 - Ex: Classes: +1, -1, weights alpha:
 \[
 \hat{y}_1 = f_1(x_1, x_2, \ldots) \\
 \hat{y}_2 = f_2(x_1, x_2, \ldots) \quad \Rightarrow \quad \hat{y}_e = \text{sign}(\sum \alpha_i \hat{y}_i)
 \]

 ...
Simple ensembles

- One option: train a “predictor of predictors”
 - Treat individual predictors as features
 \[
 \hat{y}_1 = f_1(x_1, x_2, \ldots) \\
 \hat{y}_2 = f_2(x_1, x_2, \ldots) \implies \hat{y}_e = f_e(\hat{y}_1, \hat{y}_2, \ldots)
 \]
 ...
 - Similar to multi-layer perceptron idea
 - Special case: binary, \(f_e \) linear \(\implies \) weighted vote
 - Can train ensemble weights \(f_e \) on validation data
Mixtures of experts

- Can make weights depend on x
 - Weight $\alpha_i(x)$ indicates “expertise”
 - Combine: weighted avg or just pick largest

Mixtures of three linear predictor experts
Machine Learning and Data Mining

Ensembles: Bagging

Prof. Alexander Ihler
Ensemble methods

• Why learn one classifier when you can learn many?
 – “Committee”: learn K classifiers, average their predictions

• “Bagging” = bootstrap aggregation
 – Learn many classifiers, each with only part of the data
 – Combine through model averaging

• Remember overfitting: “memorize” the data
 – Used test data to see if we had gone too far
 – Cross-validation
 • Make many splits of the data for train & test
 • Each of these defines a classifier
 • Typically, we use these to check for overfitting
 • Could we instead combine them to produce a better classifier?
Bagging

Bootstrap
- Create a random subset of data by sampling
- Draw m' of the m samples, with replacement (sometimes w/o)

Bagging
- Repeat K times
 - Create a training set of $m' \leq m$ examples
 - Train a classifier on the random training set
- To test, run each trained classifier
 - Each classifier votes on the output, take majority
 - For regression: each regressor predicts, take average

Notes:
- Some complexity control: harder for each to memorize data
 - Doesn’t work for linear models (e.g. linear regression)
 - Perceptrons OK (linear + threshold = nonlinear)
Bias / variance

- We only see a little bit of data
- Can decompose error into two parts
 - Bias – error due to model choice
 - Can our model represent the true best predictor?
 - Gets better with more complexity
 - Variance – randomness due to data size
 - Better w/ more data, worse w/ complexity
Bagged decision trees

- Randomly resample data
- Learn a decision tree for each

Simulates “equally likely” data sets we could have observed instead, & their classifiers
Bagged decision trees

- Average over collection
 - Classification: majority vote

- Reduces memorization effect
 - Not every predictor sees each data point
 - Lowers “complexity” of the overall average
 - Usually, better generalization performance

Avg of 5 trees Avg of 25 trees Avg of 100 trees
Bagging in Python

```python
# Load data set X, Y for training the ensemble...
m, n = X.shape
classifiers = [ None ] * nBag  # Allocate space for learners
for i in range(nBag):
    ind = np.floor( m * np.random.rand(nUse) ).astype(int)  # Bootstrap sample a data set:
    Xi, Yi = X[ind, :], Y[ind]  # select the data at those indices
    classifiers[i] = ml.MyClassifier(Xi, Yi)  # Train a model on data Xi, Yi

# test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros( (mTest, nBag) )  # Allocate space for predictions from each model
for i in range(nBag):
    predict[:,i] = classifiers[i].predict(Xtest)  # Apply each classifier

# Make overall prediction by majority vote
predict = np.mean(predict, axis=1) > 0  # if +1 vs -1
```
Random forests

- Bagging applied to decision trees

- Problem
 - With lots of data, we usually learn the same classifier
 - Averaging over these doesn’t help!

- Introduce extra variation in learner
 - At each step of training, only allow a subset of features
 - Enforces diversity (“best” feature not available)
 - Average over these learners (majority vote)

```python
In decisionTreeSplitData2(X,Y):
    For each of a subset of features
    For each possible split
        Score the split (e.g. information gain)
    Pick the feature & split with the best score
    Recurse on each subset
```
Ensembles: collections of predictors
- Combine predictions to improve performance

Bagging
- "Bootstrap aggregation"
- Reduces complexity of a model class prone to overfit
- In practice
 - Resample the data many times
 - For each, generate a predictor on that resampling
- Plays on bias / variance trade off
- Price: more computation per prediction
Machine Learning and Data Mining

Ensembles: Gradient Boosting

Prof. Alexander Ihler
Ensembles

• Weighted combinations of predictors
• “Committee” decisions
 – Trivial example
 – Equal weights (majority vote / unweighted average)
 – Might want to weight unevenly – up-weight better predictors

• Boosting
 – Focus new learners on examples that others get wrong
 – Train learners sequentially
 – Errors of early predictions indicate the “hard” examples
 – Focus later predictions on getting these examples right
 – Combine the whole set in the end
 – Convert many “weak” learners into a complex predictor
Gradient boosting

• Learn a regression predictor
• Compute the error residual
• Learn to predict the residual

Learn a simple predictor…

Then try to correct its errors
Gradient boosting

• Learn a regression predictor
• Compute the error residual
• Learn to predict the residual

Combining gives a better predictor… Can try to correct its errors also, & repeat
Gradient boosting

- Learn sequence of predictors
- Sum of predictions is increasingly accurate
- Predictive function is increasingly complex
Gradient boosting

- Make a set of predictions $\hat{y}[i]$

- The “error” in our predictions is $J(y, \hat{y})$
 - For MSE: $J(.) = \sum (y[i] - \hat{y}[i])^2$

- We can “adjust” \hat{y} to try to reduce the error
 - $\hat{y}[i] = \hat{y}[i] + \alpha f[i]$
 - $f[i] \approx \nabla J(y, \hat{y}) = (y[i]-\hat{y}[i])$ for MSE

- Each learner is estimating the gradient of the loss function
- Gradient descent: take sequence of steps to reduce J
 - Sum of predictors, weighted by step size α
Load data set X, Y ...
learner = [None] * nBoost # storage for ensemble of models
alpha = [1.0] * nBoost # and weights of each learner

mu = Y.mean() # often start with constant ”mean” predictor
dY = Y – mu # subtract this prediction away
for k in range(nBoost):
 learner[k] = ml.MyRegressor(X, dY) # regress to predict residual dY using X
 alpha[k] = 1.0 # alpha: ”learning rate” or ”step size”
 # smaller alphas need to use more classifiers, but may predict better given enough of them
 # compute the residual given our new prediction:
 dY = dY – alpha[k] * learner[k].predict(X)

test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros((mTest,)) + mu # Allocate space for predictions & add 1st (mean)
for k in range(nBoost):
 predict += alpha[k] * learner[k].predict(Xtest) # Apply predictor of next residual & accum
Summary

• Ensemble methods
 – Combine multiple classifiers to make “better” one
 – Committees, average predictions
 – Can use weighted combinations
 – Can use same or different classifiers

• Gradient Boosting
 – Use a simple regression model to start
 – Subsequent models predict the error residual of the previous predictions
 – Overall prediction given by a weighted sum of the collection
Machine Learning and Data Mining

Ensembles: Boosting

Prof. Alexander Ihler
Ensembles

• Weighted combinations of classifiers
• “Committee” decisions
 – Trivial example
 – Equal weights (majority vote)
 – Might want to weight unevenly – up-weight good experts

• Boosting
 – Focus new experts on examples that others get wrong
 – Train experts sequentially
 – Errors of early experts indicate the “hard” examples
 – Focus later classifiers on getting these examples right
 – Combine the whole set in the end
 – Convert many “weak” learners into a complex classifier
Boosting example

Original data set, D_1

Update weights, D_2

Update weights, D_3

Classes $+1, -1$

Trained classifier

Boostrapping example
Aside: minimizing weighted error

- So far we’ve mostly minimized unweighted error
- Minimizing weighted error is no harder:

Unweighted average loss:

\[
J(\theta) = \frac{1}{m} \sum_i J_i(\theta, x^{(i)})
\]

Weighted average loss:

\[
J(\theta) = \sum_i w_i J_i(\theta, x^{(i)})
\]

For any loss (logistic MSE, hinge, …)

\[
J(\theta, x^{(i)}) = (\sigma(\theta x^{(i)}) - y^{(i)})^2
\]

\[
J(\theta, x^{(i)}) = \max \left[0 , 1 - y^{(i)} \theta x^{(i)} \right]
\]

For e.g. decision trees, compute weighted impurity scores:

- \(p(+1) \) = total weight of data with class +1
- \(p(-1) \) = total weight of data with class -1 \(\Rightarrow H(p) = \) impurity
Boosting example

Weight each classifier and combine them:

\[0.33 \times \begin{array}{c} \text{classifier 1} \\ \text{classifier 2} \end{array} + 0.57 \times \begin{array}{c} \text{classifier 3} \\ \end{array} + 0.42 \times \begin{array}{c} \text{classifier 4} \\ \end{array} \]

\[\geq \ 0 \]

Combined classifier

1-node decision trees
“decision stumps”

very simple classifiers
AdaBoost = “adaptive boosting”

- Pseudocode for AdaBoost

```python
# Load data set X, Y … ; Y assumed +1 / -1
for i in range(nBoost):
    learner[i] = ml.MyClassifier( X, Y, weights=wts )  # train a weighted classifier
    Yhat = learner[i].predict(X)
    e = wts.dot( Y != Yhat )                         # compute weighted error rate
    alpha[i] = 0.5 * np.log( (1-e)/e )               # update weights
    wts *= np.exp( -alpha[i] * Y * Yhat )           # and normalize them
    wts /= wts.sum()

# Final classifier:
predict = np.zeros( (mTest,) )
for i in range(nBoost):
    predict += alpha[i] * learner[i].predict(Xtest)  # compute contribution of each model
predict = np.sign(predict)                        # and convert to +1 / -1 decision
# and convert to +1 / -1 decision
# and convert to +1 / -1 decision
```

- Notes
 - e > .5 means classifier is not better than random guessing
 - Y * Yhat > 0 if Y == Yhat, and weights decrease
 - Otherwise, they increase
AdaBoost theory

- Minimizing classification error was difficult
 - For logistic regression, we minimized MSE or NLL instead
 - Idea: low MSE \Rightarrow low classification error
- Example of a surrogate loss function
- AdaBoost also corresponds to a surrogate loss function $C_{ada} = \sum_i \exp[-y^{(i)}f(x^i)]$
 - Prediction is $\hat{y} = \text{sign}(f(x))$
 - If same as y, loss < 1; if different, loss > 1; at boundary, loss $= 1$
 - This loss function is smooth & convex (easier to optimize)
AdaBoost example: Viola-Jones

- Viola-Jones face detection algorithm
- Combine lots of very weak classifiers
 - Decision stumps = threshold on a single feature
- Define lots and lots of features
- Use AdaBoost to find good features
 - And weights for combining as well
Haar wavelet features

- Four basic types.
 - They are easy to calculate.
 - The white areas are subtracted from the black ones.
 - A special representation of the sample called the \textit{integral image} makes feature extraction faster.

\begin{align*}
 & A \quad B \\
 & C \quad D
\end{align*}
Training a face detector

- Wavelets give ~100k features
- Each feature is one possible classifier
- To train: iterate from 1:T
 - Train a classifier on each feature using weights
 - Choose the best one, find errors and re-weight

- This can take a long time... (lots of classifiers)
 - One way to speed up is to not train very well...
 - Rely on adaboost to fix “even weaker” classifier

- Lots of other tricks in “real” Viola-Jones
 - Cascade of decisions instead of weighted combo
 - Apply at multiple image scales
 - Work to make computationally efficient
Summary

• Ensemble methods
 – Combine multiple classifiers to make “better” one
 – Committees, majority vote
 – Weighted combinations
 – Can use same or different classifiers

• Boosting
 – Train sequentially; later predictors focus on mistakes by earlier

• Boosting for classification (e.g., AdaBoost)
 – Use results of earlier classifiers to know what to work on
 – Weight “hard” examples so we focus on them more
 – Example: Viola-Jones for face detection