Uninformed search strategies

• **Uninformed (blind):**
 – You have no clue whether one non-goal state is better than any other. Your search is blind. You don’t know if your current exploration is likely to be fruitful.

• **Various blind strategies:**
 – Breadth-first search
 – Uniform-cost search
 – Depth-first search
 – Iterative deepening search (generally preferred)
 – Bidirectional search (preferred if applicable)
Search strategy evaluation

- A search strategy is defined by the order of node expansion.

- Strategies are evaluated along the following dimensions:
 - **completeness**: does it always find a solution if one exists?
 - **time complexity**: number of nodes generated
 - **space complexity**: maximum number of nodes in memory
 - **optimality**: does it always find a least-cost solution?

- Time and space complexity are measured in terms of
 - **b**: maximum branching factor of the search tree
 - **d**: depth of the least-cost solution
 - **m**: maximum depth of the state space (may be ∞)
 - (for UCS: C^*: true cost to optimal goal; $\varepsilon > 0$: minimum step cost)
Uninformed search design choices

• Queue for Frontier:
 – FIFO? LIFO? Priority?

• Goal-Test:
 – Do goal-test when node inserted into *Frontier*?
 – Do goal-test when node removed?

• Tree Search, or Graph Search:
 – Forget *Expanded* (or *Explored*, Fig. 3.7) nodes?
 – Remember them?
Queue for Frontier

- FIFO (First In, First Out)
 - Results in Breadth-First Search

- LIFO (Last In, First Out)
 - Results in Depth-First Search

- Priority Queue sorted by path cost so far
 - Results in Uniform Cost Search

- Iterative Deepening Search uses Depth-First

- Bidirectional Search can use either Breadth-First or Uniform Cost Search
When to do goal test?

- **Do Goal-Test when node is popped from queue**
 IF you care about finding the optimal path
 AND your search space may have both short expensive and long cheap paths to a goal.
 - Guard against a short expensive goal.
 - E.g., Uniform Cost search with variable step costs.

- **Otherwise, do Goal-Test when is node inserted.**
 - E.g., Breadth-first Search, Depth-first Search, or Uniform Cost search when cost is a non-decreasing function of depth only (which is equivalent to Breadth-first Search).

- **REASON ABOUT your search space & problem.**
 - How could I possibly find a non-optimal goal?
General tree search

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure
    fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← REMOVE-FRONT(fringe)
        if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
        fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
    end loop

function EXPAND(node, problem) returns a set of nodes
    successors ← the empty set
    for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
        s ← a new NODE
        PARENT-NODE[s] ← node; ACTION[s] ← action; STATE[s] ← result
        PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
        DEPTH[s] ← DEPTH[node] + 1
        add s to successors
    end for
    return successors
```
General graph search

function \textsc{Graph-Search}(\textit{problem}, \textit{fringe}) \textbf{returns} a solution, or failure

\hspace{1em} \textit{closed} \leftarrow an empty set
\hspace{1em} \textit{fringe} \leftarrow \textsc{Insert}(\textsc{Make-Node}(\textit{Initial-State}[\textit{problem}]), \textit{fringe})

\hspace{1em} loop do
\hspace{2em} \textbf{if} \textit{fringe} is empty \textbf{then return} \textbf{failure}
\hspace{2em} \textit{node} \leftarrow \textsc{Remove-Front}(\textit{fringe})
\hspace{2em} \textbf{if} \textsc{Goal-Test}[\textit{problem}](\textit{State}[\textit{node}]) \textbf{then return} \textsc{Solution}(\textit{node})

\hspace{2em} \textbf{if} \textit{State}[\textit{node}] is not in \textit{closed} \textbf{then}
\hspace{3em} add \textit{State}[\textit{node}] to \textit{closed}
\hspace{3em} \textit{fringe} \leftarrow \textsc{InsertAll}(\textsc{Expand}(\textit{node}, \textit{problem}), \textit{fringe})
Breadth-first graph search

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node ← a node with State = problem.INITIAL-STATE, Path-Cost = 0 if
problem.GOAL-TEST(node.State) then return SOLUTION(node) frontier ←
a FIFO queue with node as the only element
explored ← an empty set
loop do
 if EMPTY?(frontier) then return failure
 node ← POP(frontier) /* chooses the shallowest node in frontier */
 add node.State to explored
 for each action in problem.ACTIONS(node.State) do
 child ← CHILD-NODE(problem, node, action)
 if child.State is not in explored or frontier then
 if problem.GOAL-TEST(child.State) then return SOLUTION(child)
 frontier ← INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.
Uniform cost search

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node ← a node with STATE = problem.INITIAL-STATE, PATH-COST = 0
frontier ← a priority queue ordered by PATH-COST, with node as the only element
explored ← an empty set

loop do
 if EMPTY?(frontier) then return failure
 node ← POP(frontier) /* chooses the lowest-cost node in frontier */
 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
 add node.STATE to explored
 for each action in problem.ACTIONS(node.STATE) do
 child ← CHILD-NODE(problem, node, action)
 if child.STATE is not in explored or frontier then
 frontier ← INSERT(child, frontier)
 else if child.STATE is in frontier with higher PATH-COST then
 replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an extra check in case a shorter path to a frontier state is discovered. The data structure for frontier needs to support efficient membership testing, so it should combine the capabilities of a priority queue and a hash table.
Depth-limited search & IDS

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? ← false

if Goal-Test[problem](State[node]) then return Solution(node)
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do
 result ← Recursive-DLS(successor, problem, limit)
 if result = cutoff then cutoff-occurred? ← true
 else if result ≠ failure then return result
 if cutoff-occurred? then return cutoff else return failure

function Iterative-Deepening-Search(problem) returns a solution, or failure

inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← Depth-Limited-Search(problem, depth)
 if result ≠ cutoff then return result
When to do Goal-Test? Summary

- For DFS, BFS, DLS, and IDS, the goal test is done when the child node is generated.
 - These are not optimal searches in the general case.
 - BFS and IDS are optimal if cost is a function of depth only; then, optimal goals are also shallowest goals and so will be found first.

- For GBFS the behavior is the same whether the goal test is done when the node is generated or when it is removed.
 - $h(\text{goal})=0$ so any goal will be at the front of the queue anyway.

- For UCS and A* the goal test is done when the node is removed from the queue.
 - This precaution avoids finding a short expensive path before a long cheap path.
Breadth-first search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored
 - also called Fringe, or OPEN
- Implementation:
 - *Frontier* is a first-in-first-out (FIFO) queue (new successors go at end)
 - Goal test when inserted

Initial state = A
Is A a goal state?

Put A at end of queue:
Frontier = [A]
Breadth-first search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored
 - also called Fringe, or OPEN
- Implementation:
 - Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
 - Goal test when inserted

Expand A to B, C
Is B or C a goal state?

Put B, C at end of queue:
Frontier = [B, C]
Breadth-first search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored
 - also called Fringe, or OPEN
- Implementation:
 - *Frontier* is a first-in-first-out (FIFO) queue (new successors go at end)
 - Goal test when inserted

Expand B to D,E
Is D or E a goal state?

Put D,E at end of queue:
Frontier = [C,D,E]
Breadth-first search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored
 - also called Fringe, or OPEN
- Implementation:
 - *Frontier* is a first-in-first-out (FIFO) queue (new successors go at end)
 - Goal test when inserted

Expand C to F, G
Is F or G a goal state?

Put F,G at end of queue:
Frontier = [D,E,F,G]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Breadth-first search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored
 - also called Fringe, or OPEN
- Implementation:
 - Frontier is a first-in-first-out (FIFO) queue (new successors go at end)
 - Goal test when inserted

Expand D; no children
Forget D

Frontier = [E,F,G]
Breadth-first search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored
 - also called Fringe, or OPEN
- Implementation:
 - *Frontier* is a first-in-first-out (FIFO) queue (new successors go at end)
 - Goal test when inserted

Expand E; no children
Forget E; B

Frontier = [F,G]
Example
BFS for 8-puzzle
Properties of breadth-first search

- **Complete?** Yes, it always reaches a goal (if \(b \) is finite)
- **Time?** \(1 + b + b^2 + b^3 + \ldots + b^d = O(b^d) \)
 (this is the number of nodes we generate)
- **Space?** \(O(b^d) \)
 (keeps every node in memory, either in frontier or on a path to frontier).
- **Optimal?** No, for general cost functions.
 Yes, if cost is a non-decreasing function only of depth.
 - With \(f(d) \geq f(d-1) \), e.g., step-cost = constant:
 - All optimal goal nodes occur on the same level
 - Optimal goals are always shallower than non-optimal goals
 - An optimal goal will be found before any non-optimal goal

- Usually **Space** is the bigger problem (more than time)
BFS: Time & Memory Costs

<table>
<thead>
<tr>
<th>Depth of Solution</th>
<th>Nodes Expanded</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>5 microseconds</td>
<td>100 bytes</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>0.5 milliseconds</td>
<td>11 kbytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>0.05 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>8</td>
<td>(10^8)</td>
<td>9.25 minutes</td>
<td>11 gigabytes</td>
</tr>
<tr>
<td>12</td>
<td>(10^{12})</td>
<td>64 days</td>
<td>111 terabytes</td>
</tr>
</tbody>
</table>

Assuming \(b=10\); 200k nodes/sec; 100 bytes/node
Uniform-cost search

Breadth-first is only optimal if path cost is a non-decreasing function of depth, i.e., \(f(d) \geq f(d-1) \); e.g., constant step cost, as in the 8-puzzle.

Can we guarantee optimality for variable positive step costs \(\geq \varepsilon \)?
(Why \(\geq \varepsilon \) ? To avoid infinite paths w/ step costs 1, \(\frac{1}{2} \), \(\frac{1}{4} \), ...)

Uniform-cost Search:

Expand node with smallest path cost \(g(n) \).

- *Frontier* is a priority queue, i.e., new successors are merged into the queue sorted by \(g(n) \).
 - Can remove successors already on queue w/higher \(g(n) \).
 - Saves memory, costs time; another space-time trade-off.

- *Goal-Test* when node is popped off queue.
Uniform-cost search

Implementation: *Frontier* = queue ordered by path cost. Equivalent to breadth-first if all step costs all equal.

- **Complete?** Yes, if b is finite and step cost $\geq \varepsilon > 0$.
 (otherwise it can get stuck in infinite loops)

- **Time?** # of nodes with path cost \leq cost of optimal solution.
 $$O(b^{1+C*/\varepsilon}) \approx O(b^{d+1})$$

- **Space?** # of nodes with path cost \leq cost of optimal solution.
 $$O(b^{1+C*/\varepsilon}) \approx O(b^{d+1})$$.

- **Optimal?** Yes, for any step cost $\geq \varepsilon > 0$.
Proof of Completeness:
Assume (1) finite max branching factor = \(b \); (2) min step cost \(\geq \varepsilon > 0 \); (3) cost to optimal goal = \(C^* \). Then a node at depth \(\lfloor 1+C^*/\varepsilon \rfloor \) must have a path cost > \(C^* \). There are \(O(b^{\lfloor 1+C^*/\varepsilon \rfloor}) \) such nodes, so a goal will be found.

Proof of Optimality (given completeness):
Suppose that UCS is not optimal. Then there must be an (optimal) goal state with path cost smaller than the found (suboptimal) goal state (invoking completeness). However, this is impossible because UCS would have expanded that node first, by definition. Contradiction.
Ex: Uniform-cost search (Search tree version)

Order of node expansion: _________________
Path found: _____________ Cost of path found: ______

Route finding problem.
Steps labeled w/cost.
Ex: Uniform-cost search

Route finding problem.
Steps labeled w/cost.

Order of node expansion: S _______________________
Path found: ____________ Cost of path found: ______
Ex: Uniform-cost search

Route finding problem. Steps labeled w/cost.

Order of node expansion: $S \rightarrow A$
Path found: _________ Cost of path found: ______

This early expensive goal node will go back onto the queue until after the later cheaper goal is found.
Ex: Uniform-cost search

(Search tree version)

Order of node expansion: S A B
Path found: ____________ Cost of path found: ______

If we were doing graph search we would remove the higher-cost of identical nodes and save memory. However, UCS is optimal even with tree search, since lower-cost nodes sort to the front.
Ex: Uniform-cost search

Route finding problem. Steps labeled w/cost.

Technically, the goal node is not really expanded, because we do not generate the children of a goal node. It is listed in “Order of node expansion” only for your convenience, to see explicitly where it was found.
Ex: Uniform-cost search (Virtual queue version)

Route finding problem.
Steps labeled w/cost.

Order of node expansion: _______________________
Path found: _____________ Cost of path found: ______

Expanded:
Next:
Children:
Queue: S/g=0
Ex: Uniform-cost search

Route finding problem.
Steps labeled w/cost.

Order of node expansion: S
Path found: _________ Cost of path found: ______

Expanded: S/g=0
Next: S/g=0
Children: A/g=1, B/g=5, C/g=15
Queue: S/g=0, A/g=1, B/g=5, C/g=15
Ex: Uniform-cost search (Virtual queue version)

Order of node expansion: _S_A_
Path found: ________
Cost of path found: ______

Route finding problem.
Steps labeled w/cost.

Expanded: S/g=0, A/g=1
Next: A/g=1
Children: G/g=11
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11

Note that in a proper priority queue in a computer system, this queue would be sorted by g(n). For hand-simulated search it is more convenient to write children as they occur, and then scan the current queue to pick the highest-priority node on the queue.
Ex: Uniform-cost search (Virtual queue version)

Route finding problem. Steps labeled w/cost.

Order of node expansion: S A B
Path found: ____________ Cost of path found: ______

Expanded: S/g=0, A/g=1, B/g=5
Next: B/g=5
Children: G/g=10
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11, G/g=10
Ex: Uniform-cost search

(Virtual queue version)

Route finding problem. Steps labeled w/cost.

The same “Order of node expansion”, “Path found”, and “Cost of path found” is obtained by both methods. They are formally equivalent to each other in all ways.

Expanded: S/g=0, A/g=1, B/g=5, G/g=10
Next: G/g=10
Children: none
Queue: S/g=0, A/g=1, B/g=5, C/g=15, G/g=11, G/g=10

Technically, the goal node is not really expanded, because we do not generate the children of a goal node. It is listed in “Order of node expansion” only for your convenience, to see explicitly where it was found.
The graph above shows the step-costs for different paths going from the start (S) to the goal (G).

Use uniform cost search to find the optimal path to the goal.

Exercise for home
Uniform cost search

- Why require step cost $\geq \varepsilon > 0$?
 - Otherwise, an infinite regress is possible.
 - Recall: $\sum_{n=1}^{\infty} 2^{-n} = 1$

S is the start node.

G is the only goal node in the search space.

No return from this branch. G will never be popped.
Depth-first search

- Expand *deepest* unexpanded node
- *Frontier* = Last In First Out (LIFO) queue, i.e., new successors go at the front of the queue.
- *Goal-Test* when inserted.

Initial state = A
Is A a goal state?
Put A at front of queue. frontier = [A]
Depth-first search

• Expand deepest unexpanded node
 – *Frontier* = LIFO queue, i.e., put successors at front

Expand A to B, C.
Is B or C a goal state?

Put B, C at front of queue.
frontier = [B, C]

Note: Can save a space factor of b by generating successors one at a time. See **backtracking search** in your book, p. 87 and Chapter 6.
Depth-first search

- Expand deepest unexpanded node
 - **Frontier** = LIFO queue, i.e., put successors at front

Expand B to D, E.
Is D or E a goal state?

Put D, E at front of queue.
frontier = [D,E,C]
Depth-first search

- Expand deepest unexpanded node
 - *Frontier* = LIFO queue, i.e., put successors at front

Expand D to H, I.
Is H or I a goal state?

Put H, I at front of queue.
frontier = [H,I,E,C]
Depth-first search

- Expand deepest unexpanded node
 - *Frontier* = LIFO queue, i.e., put successors at front

Expand H to no children.
Forget H.

frontier = [I,E,C]
Depth-first search

- Expand deepest unexpanded node
 - Frontier = LIFO queue, i.e., put successors at front

Expand I to no children.
Forget D, I.

frontier = [E,C]
Depth-first search

- Expand deepest unexpanded node
 - *Frontier* = LIFO queue, i.e., put successors at front

Expand E to J, K.
Is J or K a goal state?
Put J, K at front of queue.
frontier = [J,K,C]
Depth-first search

• Expand deepest unexpanded node
 – *Frontier* = LIFO queue, i.e., put successors at front

Expand J to no children.
Forget J.

frontier = [K,C]
Depth-first search

- Expand deepest unexpanded node
 - *Frontier* = LIFO queue, i.e., put successors at front

Expand K to no children.
Forget B, E, K.

frontier = [C]
Depth-first search

- Expand deepest unexpanded node
 - *Frontier* = LIFO queue, i.e., put successors at front

Expand C to F, G.
Is F or G a goal state?

Put F, G at front of queue.
frontier = [F,G]
Properties of depth-first search

- **Complete?** No: fails in loops/infinite-depth spaces
 - Can modify to avoid loops/repeated states along path
 - check if current nodes occurred before on path to root
 - Can use graph search (remember all nodes ever seen)
 - problem with graph search: space is exponential, not linear
 - Still fails in infinite-depth spaces (may miss goal entirely)

- **Time?** $O(b^m)$ with $m =$ maximum depth of space
 - Terrible if m is much larger than d
 - If solutions are dense, may be much faster than BFS

- **Space?** $O(bm)$, i.e., linear space!
 - Remember a single path + expanded unexplored nodes

- **Optimal?** No: It may find a non-optimal goal first
Iterative Deepening Search

• To avoid the infinite depth problem of DFS:
 – Only search until depth L
 – i.e, don’t expand nodes beyond depth L
 – Depth-Limited Search

• What if solution is deeper than L?
 – Increase depth iteratively
 – Iterative Deepening Search

• IDS
 – Inherits the memory advantage of depth-first search
 – Has the completeness property of breadth-first search
Iterative Deepening Search, $L=0$
Iterative Deepening Search, \(L=1 \)
Iterative Deepening Search, \(L=2 \)
Iterative Deepening Search, \(L=3 \)
Iterative Deepening Search

- Number of nodes generated in a depth-limited search to depth d with branching factor b:

$$N_{DLS} = b^0 + b^1 + b^2 + ... + b^{d-2} + b^{d-1} + b^d$$

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:

$$N_{IDS} = (d+1)b^0 + d b^1 + (d-1)b^2 + ... + 3b^{d-2} + 2b^{d-1} + 1b^d$$

$$= O(b^d)$$

- For $b = 10$, $d = 5$,

 - $N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$

 [Ratio: $b/(b-1)$]
Properties of iterative deepening search

- **Complete?** Yes
- **Time?** $O(b^d)$
- **Space?** $O(bd)$
- **Optimal?** No, for general cost functions. Yes, if cost is a non-decreasing function only of depth.

Generally the preferred uninformed search strategy.
Bidirectional Search

• Idea
 – simultaneously search forward from S and backwards from G
 – stop when both “meet in the middle”
 – need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean
 – need a way to specify the predecessors of G
 • this can be difficult,
 • e.g., predecessors of checkmate in chess?
 – what if there are multiple goal states?
 – what if there is only a goal test, no explicit list?

• Complexity
 – time complexity is best: $O(2 \cdot b^{d/2}) = O(b^{d/2})$
 – memory complexity is the same
Bi-Directional Search

Fig. 2.10 Bidirectional and unidirectional breadth-first searches.
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening DLS</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes[a]</td>
<td>Yes[a,b]</td>
<td>No</td>
<td>No</td>
<td>Yes[a]</td>
<td>Yes[a,d]</td>
</tr>
<tr>
<td>Time</td>
<td>O(b^d)</td>
<td>O(b^{1+C*/ε})</td>
<td>O(b^m)</td>
<td>O(b^l)</td>
<td>O(b^d)</td>
<td>O(b^{d/2})</td>
</tr>
<tr>
<td>Space</td>
<td>O(b^d)</td>
<td>O(b^{1+C*/ε})</td>
<td>O(bm)</td>
<td>O(bl)</td>
<td>O(bd)</td>
<td>O(b^{d/2})</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes[c]</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes[c]</td>
<td>Yes[c,d]</td>
</tr>
</tbody>
</table>

There are a number of footnotes, caveats, and assumptions. See Fig. 3.21, p. 91.

[a] complete if b is finite
[b] complete if step costs \(\geq ε > 0 \)
[c] optimal if step costs are all identical
 (also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search
 (also if both directions use uniform-cost search with step costs \(\geq ε > 0 \))

Note that \(d \leq [1+C*/ε] \)

Generally the preferred uninformed search strategy.
You should know...

• Overview of uninformed search methods

• Search strategy evaluation
 – Complete? Time? Space? Optimal?
 – Max branching (b), Solution depth (d), Max depth (m)
 – (for UCS: C*: true cost to optimal goal; \(\varepsilon > 0 \): minimum step cost)

• Search Strategy Components and Considerations
 – Queue? Goal Test when? Tree search vs. Graph search?

• Various blind strategies:
 – Breadth-first search
 – Uniform-cost search
 – Depth-first search
 – Iterative deepening search (generally preferred)
 – Bidirectional search (preferred if applicable)
Summary

• Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

http://aima.cs.berkeley.edu/demos.html (for more demos)