Machine Learning and Data Mining

VC Dimension

Prof. Alexander Ihler

Slides based on Andrew Moore’s
Learners and Complexity

- We’ve seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - “Representational Power”
- Different learners have different power

Example:
\[
\hat{c}(x) = \text{sign}(\theta_1 x_1 + \theta_2 x_2 + \theta_0)
\]

(c) Alexander Ihler
Learners and Complexity

- We’ve seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - “Representational Power”
- Different learners have different power

Example:
\[\hat{c}(x) = \text{sign}(\theta_1 x_1 + \theta_2 x_2) \]
Learners and Complexity

• We’ve seen many versions of underfit/overfit trade-off
 – Complexity of the learner
 – “Representational Power”

• Different learners have different power

Example:
\[
\hat{c}(x) = \text{sign}(x_1^2 + x_2^2 - \theta_0)
\]
Learners and Complexity

• We’ve seen many versions of underfit/overfit trade-off
 – Complexity of the learner
 – “Representational Power”
• Different learners have different power

• Usual trade-off:
 – More power = represent more complex systems, might overfit
 – Less power = won’t overfit, but may not find “best” learner

• How can we quantify representational power?
 – Not easily…
 – One solution is VC (Vapnik-Chervonenkis) dimension

(c) Alexander Ihler
Some notation

• Let’s assume our training data are iid from some distribution $p(x, y)$

• Define “risk” and “empirical risk”
 – These are just “long term” test and observed training error

$$R(\theta) = \text{TestError} = \mathbb{E}[\delta(c \neq \hat{c}(x ; \theta))]$$

$$R_{\text{emp}}(\theta) = \text{TrainError} = \frac{1}{m} \sum_{i} \delta(c^{(i)} \neq \hat{c}(x^{(i)} ; \theta))$$

• How are these related? Depends on overfitting…
 – Underfitting domain: pretty similar…
 – Overfitting domain: test error might be lots worse!

(c) Alexander Ihler
VC Dimension and Risk

- Given some classifier, let H be its VC dimension
 - Represents “representational power” of classifier

\[
R(\theta) = \text{TestError} = \mathbb{E}[\delta(c \neq \hat{c}(x; \theta))]
\]

\[
R_{\text{emp}}(\theta) = \text{TrainError} = \frac{1}{m} \sum_{i} \delta(c^{(i)} \neq \hat{c}(x^{(i)}; \theta))
\]

- With “high probability” $(1-\eta)$, Vapnik showed

\[
\text{TestError} \leq \text{TrainError} + \sqrt{\frac{H \log(2m/H) + H - \log(\eta/4)}{m}}
\]
Shattering

- We say a classifier \(f(x) \) can shatter points \(x^{(1)} \ldots x^{(h)} \) iff For all \(y^{(1)} \ldots y^{(h)} \), \(f(x) \) can achieve zero error on training data \((x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), \ldots (x^{(h)},y^{(h)}) \) (i.e., there exists some \(\theta \) that gets zero error)

- Can \(f(x; \theta) = \text{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \) shatter these points?

(c) Alexander Ihler
Shattering

• We say a classifier \(f(x) \) can shatter points \(x^{(1)} \ldots x^{(h)} \) iff For all \(y^{(1)} \ldots y^{(h)} \), \(f(x) \) can achieve zero error on training data \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots (x^{(h)}, y^{(h)}) \) (i.e., there exists some \(\theta \) that gets zero error)

• Can \(f(x; \theta) = \text{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \) shatter these points?
• Yes: there are 4 possible training sets…

(c) Alexander Ihler
We say a classifier $f(x)$ can shatter points $x^{(1)} \ldots x^{(h)}$ iff for all $y^{(1)} \ldots y^{(h)}$, $f(x)$ can achieve zero error on training data $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots (x^{(h)}, y^{(h)})$ (i.e., there exists some θ that gets zero error).

Can $f(x; \theta) = \text{sign}(x_1^2 + x_2^2 - \theta)$ shatter these points?
Shattering

• We say a classifier $f(x)$ can shatter points $x^{(1)} \ldots x^{(h)}$ iff
 For all $y^{(1)} \ldots y^{(h)}$, $f(x)$ can achieve zero error on training data $(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), \ldots (x^{(h)},y^{(h)})$
 (i.e., there exists some θ that gets zero error)

• Can $f(x;\theta) = \text{sign}(x_1^2 + x_2^2 - \theta)$ shatter these points?
• Nope!
VC Dimension

- The VC dimension \(H \) is defined as
 The maximum number of points \(h \) that *can be arranged* so that \(f(x) \) can shatter them

- A game:
 - Fix the definition of \(f(x;\theta) \)
 - Player 1: choose locations \(x^{(1)}\ldots x^{(h)} \)
 - Player 2: choose target labels \(y^{(1)}\ldots y^{(h)} \)
 - Player 1: choose value of \(\theta \)
 - If \(f(x;\theta) \) can reproduce the target labels, P1 wins

\[
\exists \{x^{(1)}\ldots x^{(h)}\} \text{ s.t. } \forall \{y^{(1)}\ldots y^{(h)}\} \exists \theta \text{ s.t. } \forall i \ f(x^{(i)};\theta) = y^{(i)}
\]

(c) Alexander Ihler
VC Dimension

• The VC dimension H is defined as the maximum number of points h that can be arranged so that $f(x)$ can shatter them.

• Example: what’s the VC dimension of the (zero-centered) circle, $f(x;\theta) = \text{sign}(x_1^2 + x_2^2 - \theta)$?
VC Dimension

• The VC dimension H is defined as
 The maximum number of points h that can be arranged so that $f(x)$ can shatter them

• Example: what’s the VC dimension of the (zero-centered) circle, $f(x;\theta) = \text{sign}(x_1^2 + x_2^2 - \theta)$?
• $\text{VCdim} = 1$: can arrange one point, cannot arrange two (previous example was general)
VC Dimension

• Example: what’s the VC dimension of the two-dimensional line, \(f(x; \theta) = \text{sign}(\theta_1 x_1 + \theta_2 x_2 + \theta_0) \)?
VC Dimension

- Example: what’s the VC dimension of the two-dimensional line, $f(x;\theta) = \text{sign}(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

- VC dim ≥ 3? Yes

(c) Alexander Ihler
VC Dimension

• Example: what’s the VC dimension of the two-dimensional line, \(f(x; \theta) = \text{sign}(\theta_1 x_1 + \theta_2 x_2 + \theta_0) \)?

• VC dim >= 3? Yes

• VC dim >= 4?
VC Dimension

• Example: what’s the VC dimension of the two-dimensional line, \(f(x; \theta) = \text{sign}(\theta_1 x_1 + \theta_2 x_2 + \theta_0) \)?

• VC dim \(\geq 3 \)? Yes

• VC dim \(\geq 4 \)? No…
 Any line through these points must split one pair (by crossing one of the lines)

(c) Alexander Ihler
VC Dimension

- Example: what’s the VC dimension of the two-dimensional line, \(f(x;\theta) = \text{sign}(\theta_1 x_1 + \theta_2 x_2 + \theta_0) \) ?

- VC dim \(\geq 3 \)? Yes

- VC dim \(\geq 4 \)? No…

 Any line through these points must split one pair (by crossing one of the lines)

Turns out:
For a general, linear classifier (perceptron) in \(d \) dimensions with a constant term:

VC dim = \(d+1 \)

(c) Alexander Ihler
VC dimension

• VC dimension measures the “power” of the learner
• Does *not* necessarily equal the # of parameters!

• Number of parameters does not necessarily equal complexity
 – Can define a classifier with a lot of parameters but not much power (how?)
 – Can define a classifier with one parameter but lots of power (how?)

• Lots of work to determine what the VC dimension of various learners is…

(c) Alexander Ihler
Using VC dimension

- Used validation / cross-validation to select complexity

<table>
<thead>
<tr>
<th># Params</th>
<th>Train Error</th>
<th>X-Val Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Alexander Ihler
Using VC dimension

- Used validation / cross-validation to select complexity
- Use VC dimension based bound on test error similarly

- “Structural Risk Minimization” (SRM)

<table>
<thead>
<tr>
<th># Params</th>
<th>Train Error</th>
<th>VC Term</th>
<th>VC Test Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using VC dimension

- Used validation / cross-validation to select complexity
- Use VC dimension based bound on test error similarly

Other Alternatives

- Probabilistic models: likelihood under model (rather than classification error)
- AIC (Aikike Information Criterion)
 - Log-likelihood of training data - # of parameters
- BIC (Bayesian Information Criterion)
 - Log-likelihood of training data - (# of parameters)*log(m)

- Similar to VC dimension: performance + penalty

- BIC conservative; SRM very conservative
- Also, “true Bayesian” methods (take prob. learning…)

(c) Alexander Ihler