Machine Learning and Data Mining

Linear classification

Prof. Alexander Ihler
Supervised learning

- Notation
 - Features x
 - Targets y
 - Predictions \hat{y}
 - Parameters θ

Program ("Learner")
Characterized by some "parameters" θ
Procedure (using θ) that outputs a prediction

Learning algorithm
Change θ
Improve performance

Training data (examples)
Features
Feedback / Target values
Score performance ("cost function")
Linear regression

- Contrast with classification
 - Classify: predict discrete-valued target y

"Predictor":
Evaluate line:
$$r = \theta_0 + \theta_1 x_1$$
return r
Perceptron Classifier (2 features)

\[f = \theta_1 X_1 + \theta_2 X_2 + \theta_0 \]

weighted sum of the inputs

Threshold Function

output = class decision

Visualizing for one feature “x”:
Perceptrons

- Perceptron = a linear classifier
 - The parameters θ are sometimes called weights ("w")
 - real-valued constants (can be positive or negative)
 - Define an additional constant input “1”

- A perceptron calculates 2 quantities:
 1. A weighted sum of the input features
 2. This sum is then thresholded by the $T(.)$ function

- Perceptron: a simple artificial model of human neurons
 - weights = “synapses”
 - threshold = “neuron firing”

(c) Alexander Ihler
Notation

• Inputs:
 - $x_0, x_1, x_2, \ldots, x_n$
 - $x_1, x_2, \ldots, x_{n-1}, x_n$ are the values of the n features
 - $x_0 = 1$ (a constant input)
 - $\mathbf{x} = [x_0, x_1, x_2, \ldots, x_n]$: feature vector (row vector)

• Weights (parameters):
 - $\theta_0, \theta_1, \theta_2, \ldots, \theta_n$
 - we have $n+1$ weights: one for each feature + one for the constant
 - $\theta = [\theta_0, \theta_1, \theta_2, \ldots, \theta_n]$: parameter vector (row vector)

• Linear response
 - $\theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n = \mathbf{x} \cdot \theta$’ then threshold

```matlab
F = X.dot( theta.T );      # compute linear response
Yhat = np.sign(F)          # predict class +1 or -1
Yhat = 2*(F>0)-1          # manual ”sign” of F
```
The perceptron is defined by the decision algorithm:

The perceptron represents a hyperplane decision surface in d-dimensional space. A line in 2D, a plane in 3D, etc.

The equation of the hyperplane is given by

$$
\theta \cdot x' = 0
$$

This defines the set of points x' are on the boundary:

$$
\begin{align*}
\sigma(x_1, x_2, \ldots, x_d, x_{d+1}) &= 1 \quad \text{(if } \theta \cdot x' > 0) \\
&= -1 \quad \text{(otherwise)}
\end{align*}
$$

(c) Alexander Ihler
Example, Linear Decision Boundary

\[\theta = (\theta_0, \theta_1, \theta_2) = (1, .5, -.5) \]
Example, Linear Decision Boundary

\[\theta = (\theta_0, \theta_1, \theta_2) = (1, .5, -.5) \]

\[\theta \cdot x' = 0 \]

\[\Rightarrow .5 \cdot x_1 - .5 \cdot x_2 + 1 \cdot 1 = 0 \]

\[\Rightarrow -.5 x_2 = -.5 x_1 - 1 \]

\[\Rightarrow x_2 = x_1 + 2 \]

From P. Smyth
Example, Linear Decision Boundary

\[\theta = (\theta_0, \theta_1, \theta_2) \]
\[= (1, .5, -.5) \]

\[\theta \cdot x' < 0 \]
\[\Rightarrow x_1 + 2 < x_2 \]
(this is the equation for decision region -1)

\[\theta \cdot x' > 0 \]
\[\Rightarrow x_1 + 2 > x_2 \]
(decision region +1)

From P. Smyth
Separability

- A data set is separable by a learner if
 - There is some instance of that learner that correctly predicts all the data points
- Linearly separable data
 - Can separate the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line
Class overlap

- Classes may not be well-separated
- Same observation values possible under both classes
 - High vs low risk; features \{age, income\}
 - Benign/malignant cells look similar
 - ...
- Common in practice
- May not be able to perfectly distinguish between classes
 - Maybe with more features?
 - Maybe with more complex classifier?
- Otherwise, may have to accept some errors

(c) Alexander Ihler
Another example
Non-linear decision boundary
Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)
Adding features

• Linear classifier can’t learn some functions

1D example:

\[y = T(b x + c) \]

Not linearly separable

Add quadratic features

\[y = T(a x^2 + b x + c) \]

Linearly separable in new features…
Adding features

• Linear classifier can’t learn some functions

1D example:

\[y = T(bx + c) \]

Not linearly separable

Quadratic features, visualized in original feature space:

\[y = T(ax^2 + bx + c) \]

More complex decision boundary: \[ax^2 + bx + c = 0 \]
Representational Power of Perceptrons

What mappings can a perceptron represent perfectly?
- A perceptron is a linear classifier
- thus it can represent any mapping that is linearly separable
- some Boolean functions like AND (on left)
- but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right?
Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right?

Ellipsoidal decision boundary: \(ax_1^2 + bx_1 + cx_2^2 + dx_2 + ex_1x_2 + f = 0 \)
Feature representations

• Features are used in a linear way
• Learner is dependent on representation

• Ex: discrete features
 – Mushroom surface: \{fibrous, grooves, scaly, smooth\}
 – Probably not useful to use $x = \{1, 2, 3, 4\}$
 – Better: 1-of-K, $x = \{[1000], [0100], [0010], [0001]\}$
 – Introduces more parameters, but a more flexible relationship
Effect of dimensionality

- Data are increasingly separable in high dimension – is this a good thing?

 “Good”
 - Separation is easier in higher dimensions (for fixed # of data m)
 - Increase the number of features, and even a linear classifier will eventually be able to separate all the training examples!

 “Bad”
 - Remember training vs. test error? Remember overfitting?
 - Increasingly complex decision boundaries can eventually get all the training data right, but it doesn’t necessarily bode well for test data…

![Graph showing predictive error vs. complexity with Underfitting, Ideal Range, Overfitting, Error on Training Data, and Error on Test Data]
Summary

• Linear classifier \Leftrightarrow perceptron

• Linear decision boundary
 – Computing and visualizing

• Separability
 – Limits of the representational power of a perceptron

• Adding features
 – Interpretations
 – Effect on separability
 – Potential for overfitting

(c) Alexander Ihler
Machine Learning and Data Mining

Linear classification: Learning

Prof. Alexander Ihler
Learning the Classifier Parameters

• Learning from Training Data:
 – training data = labeled feature vectors
 – Find parameter values that predict well (low error)
 • error is estimated on the training data
 • “true” error will be on future test data

• Define an objective function \(J(\theta) \):
 – Classifier accuracy (for a given set of weights \(\theta \) and labeled data)

• Maximize this objective function (or, minimize error)
 – An optimization or search problem over the vector \((\theta_1, \theta_2, \theta_0) \)
Training a linear classifier

• How should we measure error?
 – Natural measure = “fraction we get wrong” (error rate)

\[\text{err}(\theta) = \frac{1}{m} \sum \delta(\hat{y}(i) \neq y(i)) \]

where \(\delta(\hat{y}(i) \neq y(i)) = 0 \) if \(\hat{y}(i) = y(i) \), and 1 otherwise

• But, hard to train via gradient descent
 – Not continuous
 – As decision boundary moves, errors change abruptly

\[
\begin{align*}
Y\text{hat} &= \text{np.sign}(X \cdot \theta^T) ; \\
\text{err} &= \text{np.mean}(Y \neq Y\text{hat})
\end{align*}
\]

(c) Alexander Ihler
Linear regression?

• Simple option: set θ using linear regression

In practice, this often doesn’t work so well...
 – Consider adding a distant but “easy” point
 – MSE distorts the solution

(c) Alexander Ihler
Perceptron algorithm

- Perceptron algorithm: an SGD-like algorithm

 While (~done)

 For each data point \(j \):

 \[
 \hat{y}(j) = T(\theta \cdot x(j)) : \text{predict output for data point } j
 \]

 \[
 \theta \leftarrow \theta + \alpha (y(j) - \hat{y}(j)) x(j) : \text{“gradient-like” step}
 \]

- Compare to linear regression + MSE cost

 - Identical update to SGD for MSE except error uses
 thresholded \(\hat{y}(j) \) instead of linear response \(\theta x' \)
 so:

 - (1) For correct predictions, \(y(j) - \hat{y}(j) = 0 \)

 - (2) For incorrect predictions, \(y(j) - \hat{y}(j) = \pm 2 \)

 “adaptive” linear regression: correct predictions stop contributing

(c) Alexander Ihler
Perceptron algorithm

• Perceptron algorithm: an SGD-like algorithm

While (~done)
 For each data point j:
 \[\hat{y}(j) = T(\theta \cdot x(j)) \]: predict output for data point j
 \[\theta \leftarrow \theta + \alpha (y(j) - \hat{y}(j)) x(j) \]: “gradient-like” step

(c) Alexander Ihler
Perceptron algorithm

- Perceptron algorithm: an SGD-like algorithm

 While (~done)
 For each data point j:
 \[
 \hat{y}(j) = T(\theta \ast x(j)) \quad : \text{predict output for data point } j
 \]
 \[
 \theta \leftarrow \theta + \alpha (y(j) - \hat{y}(j)) x(j) \quad : \text{“gradient-like” step}
 \]
Perceptron algorithm

- Perceptron algorithm: an SGD-like algorithm
 While (~done)
 For each data point j:
 $$\hat{y}(j) = T(\theta \ast x(j))$$: predict output for data point j
 $$\theta \leftarrow \theta + \alpha (y(j) - \hat{y}(j)) x(j)$$: “gradient-like” step
 (Converges if data are linearly separable)

(c) Alexander Ihler
Surrogate loss functions

• Another solution: use a “smooth” loss
 – e.g., approximate the threshold function
 – Usually some smooth function of distance
 • Example: “sigmoid”, looks like an “S”
 – Now, measure e.g. MSE

\[J(\theta) = \frac{1}{m} \sum_{j} \left(\sigma(f(x^{(j)})) - y^{(j)} \right)^2 \]

– Far from the decision boundary: |f(.)| large, small error
– Nearby the boundary: |f(.)| near 1/2, larger error

1D example:

Classification error = 2/9

MSE = \((0^2 + 1^2 + .2^2 + .25^2 + .05^2 + \ldots)/9\)
Beyond misclassification rate

- Which decision boundary is “better”?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better…

- Side benefit of “smoothed” error function
 - Encourages data to be far from the decision boundary
 - See more examples of this principle later…
Training the Classifier

• Once we have a smooth measure of quality, we can find the “best” settings for the parameters of $f(X_1,X_2) = a \times X_1 + b \times X_2 + c$

• Example: 2D feature space \leftrightarrow parameter space

(c) Alexander Ihler
Training the Classifier

- Once we have a smooth measure of quality, we can find the “best” settings for the parameters of $f(X_1, X_2) = aX_1 + bX_2 + c$

- Example: 2D feature space \leftrightarrow parameter space

$\begin{align*}
\text{[X,Y]} & \quad \text{[arctan}(A/B), c]
\end{align*}$

(c) Alexander Ihler
Training the Classifier

• Once we have a smooth measure of quality, we can find the “best” settings for the parameters of
 \[f(X_1, X_2) = aX_1 + bX_2 + c \]
• Finding the minimum loss \(J(.) \) in parameter space…

(c) Alexander Ihler
Finding the Best MSE

• As in linear regression, this is now just optimization

• Methods:
 – Gradient descent
 • Improve loss by small changes in parameters ("small" = learning rate)
 – Or, substitute your favorite optimization algorithm…
 • Coordinate descent
 • Stochastic search
 • Genetic algorithms

(c) Alexander Ihler
Gradient Equations

- MSE (note, depends on function $\sigma(.)$)

$$J(\theta = [a, b, c]) = \frac{1}{m} \sum_i (\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)})^2$$

- What’s the derivative with respect to one of the parameters?

$$\frac{\partial J}{\partial a} = \frac{1}{m} \sum_i 2(\sigma(\theta \cdot x^{(i)}) - y^{(i)}) \frac{\partial \sigma(\theta \cdot x^{(i)})}{\partial \theta} x_1^{(i)}$$

Error between class and prediction
Sensitivity of prediction to changes in parameter “a”

- Similar for parameters b, c [replace x_1 with x_2 or 1 (constant)]
Saturating Functions

• Many possible “saturating” functions

• “Logistic” sigmoid (scaled for range [0,1]) is

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]

• Derivative is

\[\partial \sigma(z) = \sigma(z) \ (1-\sigma(z)) \]

• Python Implementation:

```python
def sig(z):
    # logistic sigmoid
    return 1.0 / (1.0 + np.exp(-z)) # in [0,1]

def dsig(z):
    # its derivative at z
    return sig(z) * (1-sig(z))
```

For range [-1 , +1]:

\[\rho(z) = 2 \ \sigma(z) -1 \]
\[\partial \rho(z) = 2 \ \sigma(z) \ (1-\sigma(z)) \]

Predict: threshold z or \(\rho \) at zero

(to predict: threshold z at 0 or threshold \(\sigma(z) \) at ½)
Logistic regression

- Interpret $\sigma(\theta \cdot x')$ as a probability that $y = 1$
- Use a negative log-likelihood loss function
 - If $y = 1$, cost is $-\log \Pr[y=1] = -\log \sigma(\theta \cdot x')$
 - If $y = 0$, cost is $-\log \Pr[y=0] = -\log (1 - \sigma(\theta \cdot x'))$

- Can write this succinctly:
 $$J(\theta) = -\frac{1}{m} \sum_i y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1-y^{(i)}) \log (1-\sigma(\theta \cdot x^{(i)}))$$

 - Nonzero only if $y=1$
 - Nonzero only if $y=0$

(c) Alexander Ihler
Logistic regression

- Interpret $\sigma(\theta x')$ as a probability that $y = 1$
- Use a negative log-likelihood loss function
 - If $y = 1$, cost is $- \log Pr[y=1] = - \log \sigma(\theta x')$
 - If $y = 0$, cost is $- \log Pr[y=0] = - \log (1 - \sigma(\theta x'))$

- Can write this succinctly:
 \[
 J(\theta) = -\frac{1}{m} \sum_{i} y(i) \log \sigma(\theta x(i)) + (1-y(i)) \log (1-\sigma(\theta x(i)))
 \]

- Convex! Otherwise similar: optimize $J(\theta)$ via …

1D example:
Classification error = MSE = 2/9
NLL = $- (\log(.99) + \log(.97) + \ldots)/9$
Gradient Equations

• Logistic neg-log likelihood loss:

\[
J(\theta) = -\frac{1}{m} \sum_i y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1-y^{(i)}) \log(1-\sigma(\theta \cdot x^{(i)}))
\]

• What’s the derivative with respect to one of the parameters?

\[
\frac{\partial J}{\partial a} = -\frac{1}{m} \sum_i y^{(i)} \frac{1}{\sigma(\theta \cdot x^{(i)})} \partial \sigma(\theta \cdot x^{(i)}) x_1^{(i)} + (1-y^{(i)}) \ldots
\]

\[
= -\frac{1}{m} \sum_i y^{(i)} (1 - \sigma(\theta \cdot x^{(i)})) x_1^{(i)} - (1 - y^{(i)}) \ldots
\]
Surrogate loss functions

- Replace 0/1 loss with something easier:

\[\Delta_i(\theta) = \delta(T(\theta x^{(i)}) \neq y^{(i)}) \]

- Logistic MSE

\[J_i(\theta) = 4(\sigma(\theta x^{(i)}) - y^{(i)})^2 \]

- Logistic Neg Log Likelihood

\[J_i(\theta) = -\frac{y^{(i)}}{\log 2} \log \sigma(\theta \cdot x^{(i)}) + \ldots \]
Summary

- Linear classifier ⇔ perceptron

- Measuring quality of a decision boundary
 - Error rate (0/1 loss)
 - Logistic sigmoid + MSE criterion
 - Logistic Regression

- Learning the weights of a linear classifier from data
 - Reduces to an optimization problem
 - Perceptron algorithm
 - For MSE or Logistic NLL, we can do gradient descent
 - Gradient equations & update rules
Multiclass linear models

• Define a generic linear classifier by

\[f(x; \theta) = \arg \max_y \theta \cdot \Phi(x, y) \]

• Example: \(y \in \{-1, +1\} \)

\[\Phi(x, y) = y \begin{bmatrix} 1 & x & x^2 & \ldots \end{bmatrix} \]

\[f(x; \theta) = \begin{cases} +1 & \theta \cdot \begin{bmatrix} 1 & x & x^2 & \ldots \end{bmatrix} > -\theta \cdot \begin{bmatrix} 1 & x & x^2 & \ldots \end{bmatrix} \\ -1 & \text{o.w.} \end{cases} \]

(Standard perceptron rule)
Multiclass linear models

- Define a generic linear classifier by

\[f(x; \theta) = \arg \max_y \theta \cdot \Phi(x, y) \]

- Example: \(y \in \{0, 1, 2, \ldots\} \)

\[\Phi(x, y) = [\mathbb{1}[y = 0][1 \ x \ x^2 \ldots] \ \mathbb{1}[y = 1][1 \ x \ x^2 \ldots] \ldots] \]

\[\theta = [[\theta_{00} \ \theta_{01} \ \theta_{02} \ldots] \ [\theta_{10} \ \theta_{11} \ \theta_{12} \ldots] \ldots] \]

(parameters for each class \(c \))

\[f(x; \theta) = \arg \max_c \theta_c \cdot [1 \ x \ x^2 \ldots] \]

(predict class with largest linear response)

(c) Alexander Ihler
Training multiclass perceptrons

- Multi-class perceptron algorithm
 - Straightforward generalization of perceptron alg

- Multilogistic regression
 - Take $p(c \mid x) \propto \exp[\theta \Phi(x,c)]$
 - Normalize by sum over classes c
 - Straightforward generalization of logistic regression