Project Compression and Change Request

From PMGT614

By
Troy Stempfley

Embry-Riddle Aeronautical University Worldwide
PMGT 690
June 25, 2017
WBS 4.5, Description of Compression Techniques And Approved Change Request Form

by

Group 4

Adrienne Smith

Ashley Sweat

Dein Elliot

Marilyn Villagas

Ronald Howze

Troy D. Stempfley

A Paper
Submitted to ERAU Worldwide
in Partial Fulfillment of the Requirements of the
Master Science Degree Course
PMGT 614

Embry-Riddle Aeronautical University
Worldwide
Online Campus
November 2016
“Schedule Compression techniques are used to shorten the schedule without reducing the project scope” (PMI, 2013, p181). The compression techniques we chose to use is the Fast tracking “technique in which activates or phases normally done in sequence are performed in parallel” (PMI, 2013, p181)

Looking over the project we found that we had two assembly activities. One as part of the integration tasks that was preliminary to testing. The second was the actual bicycle build. By using the bicycle build as the integration assembly task and rescheduling the testing afterwards we were able to reduce project by 162 hours. This in turn reduced the Project Management monitoring time and costs as well.

There were no negative impacts to the project. This proposal will have the technician build the bicycle for testing instead of the engineer team. The positive impacts were the overall reduction in cost and time allowing the customer to receive the upgraded bicycle in time to mass produce the product for the holiday season.

Approved Change Request form

<table>
<thead>
<tr>
<th>Name of Project: Bicycle Build</th>
<th>Project Manager: M. Villegas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Request #: 1</td>
<td>Change Request Date: 11/11/16</td>
</tr>
<tr>
<td>Change Requested By: Name: T Stempfley</td>
<td>Current Project Phase: Integration</td>
</tr>
</tbody>
</table>

Description of Change:
The original completion date was December 28th, 2016. The change described herein would compress the schedule and make the completion date November 29th, 2016.

The customer requested the project be completed early to reduce cost and make the product available for Christmas. To reach an early completion, the project team used Fast Tracking of the “Integration assembly” and bicycle build, reducing 30 days from the original schedule.

Scope Impact:
None
Schedule Impact:
The change will reduce the time and cost by combining the “Integration Assembly” with the actual bicycle build then perform testing afterwards. This reduces the overall project time by 162 hours. The rest of the project schedule will follow accordingly with the same comparative start date but the new completion date will be November 29th, 2016.

Cost Impact:
The EAC for this project before the requested compression is $35,799.92. The revised EAC would be $16,869.92

The new PM costs will be $12,390 vs $29,400 and the change will eliminate $1920 cost for “Integration assembly.”

Quality Impact:
Preexisting quality standards remain in place.

Possible Risks:
Negative risk(s): minimal; none
Positive risk(s): higher sales potential from getting the product out before the holidays
the reduced overall cost of the project

<table>
<thead>
<tr>
<th>Reviewed By:</th>
<th>Position:</th>
<th>Date: 11/11/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Team</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended Action Approve or Reject? APPROVE
References