Convex Optimization

Prof. Nati Srebro

Lecture 3:

Steepest Descent and Gradient Descent

Reading: Boyd and Vandenberghe 9.1-9.4
Alternative reading: Bertsekas Nonlinear Programming 1.2-1.3
Optional reading on other linesearch and stepsize strategies:
Nocedal and Wright 3.1-3.2, parts of 3.3, 3.5
Unconstrained Optimization Problems

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

\[
f: \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}
\]

• We will assume (for now) that we are given some starting point \(x^{(0)} \in \text{dom}(f) \) (i.e. with \(f(x^{(0)}) < \infty \))

• Optimize given \(x^{(0)} \) and access to a 1\(^{st}\) order oracle
 \[
x \mapsto f(x), \nabla f(x)
 \]
Center of Mass Method

• Requires keeping track of polyhedral with increasing number of facets—$O(nk) = O\left(n^2 \log \frac{1}{\epsilon}\right)$ memory

• Requires computing center of mass
 • Equivalent to integrating—harder then optimizing!
 • Can approximate well enough in randomized $\text{poly}(n)$ time

• Reasonable number of iterations / grad evals:
 \[O(n \log \frac{1}{\epsilon}) \]

...but horrible runtime
(Generic) Descent Method

Init $x^{(0)} \in dom(f)$

Iterate $x^{(k+1)} \leftarrow x^{(k)} + t^{(k)} \Delta x^{(k)}$

- Def: Δx is a descent direction iff $\langle \nabla f(x), \Delta x \rangle < 0$

- Recall:
 $$f(x^+) = f(x + t\Delta x) \geq f(x) + t\langle \nabla f(x), \Delta x \rangle$$

- Cutting plane view:
 $$x^* \in \{ x | \langle \nabla f(x^{(k)}), x - x^{(k)} \rangle < 0 \}$$

- Better be < 0
Which Descent Direction?

\[x^{(k+1)} \leftarrow \arg \min \{ f(x^{(k)}) + \langle \nabla f(x^{(k)}), x - x^{(k)} \rangle + \frac{\alpha}{2} \| x - x^{(k)} \|^2 \} \]

1st order approx of \(f(x) \)

Only valid near \(x^{(k)} \)
Which Descent Direction?

\[x^{(k+1)} \leftarrow \arg \min f(x^{(k)}) + \langle \nabla f(x^{(k)}), x - x^{(k)} \rangle + \frac{\alpha}{2} \| x - x^{(k)} \|^2 \]

\[= \arg \min f(x^{(k)}) + t \langle \nabla f(x^{(k)}), \Delta x \rangle + \frac{\alpha}{2} t^2 \| \Delta x \|^2 \]

\[x = x^{(k)} + t \Delta x \]

\[\| \Delta x \|^2 = 1 \]

\[t = \frac{-\langle \nabla f(x), \Delta x \rangle}{\alpha} \]

\[\Delta x = -\arg \max_{\| v \| = 1} \langle \nabla f(x^{(k)}), v \rangle \]
Direction of Steepest Descent

\[\Delta x = -\arg \max_{||v||=1} \langle \nabla f(x^{(k)}), v \rangle \]

- Choice of norm \(|| \cdot || \) is crucial!

- Using the Euclidean norm: \(||x||_2 = \sqrt{\sum_i x[i]^2} \): \(\Delta x \propto -\nabla f(x^{(k)}) \) (as vectors)

- Depends on choice of basis!

- Choice of norm (e.g., basis for Euclidean norm) relates the primal \(x \) space to the dual space of gradients \(\nabla f \)
Gradient Descent
(Steepest Descent w.r.t Euclidean Norm)

\[\Delta x = -\nabla f(x^{(k)}) \]

Init \quad x^{(0)} \in \text{dom}(f)

Iterate \quad x^{(k+1)} \leftarrow x^{(k)} - t^{(k)} \nabla f(x^{(k)})

Reminder: We are violating here the distinction between the primal space and the dual gradient space—we are implicitly linking them by matching representations w.r.t. a chosen basis

Note: \(\Delta x \) is not normalized (i.e. we don’t require \(\|\Delta x\|_2 = 1 \)). This just changes the meaning of \(t \).

How do we choose the stepsize \(t^{(k)} \)?
Setting the Stepsize
Option 1: Exact Linesearch

\[t^{(k)} \leftarrow \arg \min_{t \in \mathbb{R}} f(x^{(k)} + t\Delta x^{(k)}) \]

• This is a convex one-dimensional problem
 ➔ can use bisection!

• But to what accuracy?

• Outer loop (updating \(x^{(k)} \)) and inner loop (optimizing \(t^{(k)} \)):
 when do we stop inner loop and iterate outer loop?
Option 2: Backtracking Linesearch (Armijo’s Rule)

- Parameters: $0 < \alpha < \frac{1}{2}$ and $0 < \beta < 1$
- Input: initial point x
 - subgradient $\nabla f(x)$ at initial point
 - direction/vector Δx
 - evaluation oracle for $f(\cdot)$
- Output: stepsize t

```
Init $t \leftarrow 1$
Until $f(x + t\Delta x) < f(x) + \alpha \cdot t\langle \nabla f(x), \Delta x \rangle$
  Set $t \leftarrow \beta \cdot t$
```
Gradient Descent

Init \[x^{(0)} \in \text{dom}(f) \]

Iterate \[\Delta x^{(k)} = -\nabla f(x^{(k)}) \]

Set \(t^{(k)} \) by backtracking linesearch

\[x^{(k+1)} \leftarrow x^{(k)} + t^{(k)} \Delta x^{(k)} \]

Stopping condition?

Runtime analysis? How many iterations?
Smoothness and Strong Convexity

Def: \(f \) is \(\mu \)-strongly convex

\[
f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{\mu}{2} \|\Delta x\|^2 \leq f(x + \Delta x) \leq f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{M}{2} \|\Delta x\|^2
\]

Can be viewed as a condition on the directional 2nd derivatives

\[
\mu \leq f''_v(x) = \frac{\partial^2}{\partial t^2} f(x + tv) = v^\top \nabla^2 f(x)v \leq M \quad \text{(for } \|v\|_2 = 1)\]

Def: \(f \) is \(M \)-smooth

\[
f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{M}{2} \|\Delta x\|^2
\]
Smoothness and Strong Convexity

Def: f is μ-strongly convex

$$f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{\mu}{2} \|\Delta x\|_2^2 \leq f(x + \Delta x) \leq f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{M}{2} \|\Delta x\|_2^2$$

Can be viewed as a condition on the directional 2nd derivatives

$$\mu \leq f''_v(x) = \frac{\partial^2}{\partial t^2} f(x + tv) = v^\top \nabla^2 f(x)v \leq M \quad \text{(for } \|v\|_2 = 1)$$

And as condition on eigenvalues of Hessian:

$$\mu \leq \lambda_{\min}(\nabla^2 f(x)), \lambda_{\max}(\nabla^2 f(x)) \leq M$$

$$\mu I \preceq \nabla^2 f(x) \preceq MI$$

$$\kappa = \frac{M}{\mu} = \max_x \lambda_{\max}(\nabla^2 f(x)) \over \min_x \lambda_{\min}(\nabla^2 f(x))$$
Examples

\[f(x) = \frac{1}{2} x^\top H x + b^\top x \]

\[H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \mu = 1, M = 1 \]

\[H = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \quad \mu = 5, M = 5 \]

\[H = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix} \quad \mu = 1, M = 5 \]

\[H = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad \mu = 1, M = 5 \]
Strong Convexity and Sub-optimality

• Assume \(f \) is \(\mu \)-strongly-convex (i.e. \(\forall x \mu I \preceq \nabla^2 f(x) \))

\[
p^* = f(x^*) \\
\geq \min_y f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2 = f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2
\]
Strong Convexity and Sub-optimality

• Assume f is μ-strongly-convex (i.e. $\forall x \mu I \preceq \nabla^2 f(x)$)

$$p^* = f(x^*) \geq f(x) + \langle \nabla f(x), x^* - x \rangle + \frac{\mu}{2} \|x^* - x\|^2$$

$$\geq \min_y f(y) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2 = f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2$$

$$\Rightarrow f(x) - p^* \leq \frac{1}{2\mu} \|\nabla f(x)\|_2^2$$

• Stopping condition to ensure ϵ-suboptimality:

$$\|\nabla f(x)\| \leq \sqrt{2\mu \epsilon}$$
Runtime Analysis in terms of $\kappa = \frac{M}{\mu}$

- Assuming strong convexity AND smoothness $\forall x \mu I \leq \nabla^2 f(x) \leq MI$
- Using exact linesearch:

$$f(x^+) = \min_t f(x - t\nabla f(x))$$

$$\leq \min_t f(x) + \langle \nabla f(x), -t\nabla f(x) \rangle + \frac{M}{2} \|t\nabla f(x)\|_2^2$$

$$= \min_t f(x) - t\|\nabla f(x)\|^2 + t^2 \frac{M}{2} \|\nabla f(x)\|_2^2 = f(x) - \frac{1}{2M} \|\nabla f(x)\|_2^2$$

$$\leq f(x) - \frac{2\mu}{2M} (f(x) - p^*)$$

$$\Rightarrow f(x^{(k+1)}) - p^* \leq f(x^{(k)}) - p^* - \frac{1}{\kappa} (f(x^{(k)}) - p^*) = \left(1 - \frac{1}{\kappa}\right) (f(x^{(k)}) - p^*)$$

$$\Rightarrow f(x^{(k)}) - p^* \leq \left(1 - \frac{1}{\kappa}\right)^k (f(x^{(0)}) - p^*)$$

$$\Rightarrow$$ Number of iterations required for $f(x^{(k)}) \leq p^* + \epsilon$:

$$k \leq \frac{1}{\log\left(\frac{\kappa}{\kappa-1}\right)} \log\left(\frac{f(x^{(0)})-p^*}{\epsilon}\right)$$
Gradient Descent for Smooth and Strongly Convex Objectives

• **Theorem:** If f is μ-strongly convex and M-smooth on

$$S^0 = \{x | f(x) \leq f(x^{(0)})\} \text{ (i.e. } \forall f(x) \leq f(x^{(0)}) \mu I \preceq \nabla^2 f(x) \preceq MI),$$

then Gradient Descent with exact line search with at most

$$k \leq \frac{1}{-\log\left(1 - \frac{1}{\kappa}\right)} \log\left(\frac{f(x^{(0)}) - p^*}{\epsilon}\right) \approx \kappa \cdot \log\left(\frac{f(x^{(0)}) - p^*}{\epsilon}\right)$$

iterations ensures $f(x^{(k)}) \leq p^* + \epsilon$
Using Backtracking Lineasearch

- **Claim:** If f is M-smooth, then any $t < \frac{1}{M}$ satisfies Armijo for any $\alpha < 1/2$

 - **Proof:**
 \[
 f(x - t\nabla f(x)) \leq f(x) + \langle \nabla f(x), -t\nabla f(x) \rangle + \frac{M}{2} t\|t\nabla f(x)\|_2^2
 \]
 \[
 = f(x) - \left(1 - \frac{M}{2} t\right) t\|\nabla f(x)\|_2^2 \leq f(x) - \frac{1}{2} t\|\nabla f(x)\|_2^2 \leq f(x) - t\alpha\|\nabla f(x)\|_2^2
 \]

- **Conclusion:** we either use $t = 1$ or $t > \beta / M$
Using Backtracking Lineasearch

Init $t \leftarrow 1$
Until $f(x + t\Delta x) \leq f(x) + \alpha \cdot t \langle \nabla f(x), \Delta x \rangle = f(x) - t\alpha \|\nabla f(x)\|^2$
Set $t \leftarrow \beta \cdot t$

• **Claim:** If f is M-smooth, then any $t < \frac{1}{M}$ satisfies Armijo for any $\alpha < 1/2$

 Proof: $f(x - t\nabla f(x)) \leq f(x) + \langle f(x), -t\nabla f(x) \rangle + \frac{M}{2} \|t\nabla f(x)\|^2$

 $= f(x) - \left(1 - \frac{M}{2} t\right) \|\nabla f(x)\|^2 \leq f(x) - t\left(\frac{1}{2} \|\nabla f(x)\|^2\right) \leq f(x) - t\alpha \|\nabla f(x)\|^2$

• **Conclusion:** we either use $t = 1$ or $t > \beta / M$

 $\Rightarrow f(x - t\nabla f(x)) \leq f(x) - \min \left(1, \frac{\beta}{M}\right) \alpha \|\nabla f(x)\|^2$

 $$\#\text{iter } k \leq \frac{1}{-\log(1-2\alpha \min(\mu, \frac{\beta}{\kappa}))} \log \left(\frac{f(x^{(0)}) - p^*}{\epsilon}\right)$$

• How many inner iterations?

 Since $t < 1/M$ always OK, at most $\left\lfloor \frac{\log \frac{1}{M}}{\log \beta} \right\rfloor$ per outer iteration
Gradient Descent with Backtracking Linesearch

Init \(x^{(0)} \in \text{dom}(f) \)

Iterate \(\Delta x^{(k)} = -\nabla f(x^{(k)}) \)

Stop if \(\|\nabla f(x^{(k)})\|^2 \leq 2\mu\epsilon \)

Set \(t^{(k)} \) by backtracking linesearch with params \(\alpha, \beta \)

\(x^{(k+1)} \leftarrow x^{(k)} + t^{(k)}\Delta x^{(k)} \)

If \(f \) is \(\mu \)-strongly-convex and \(M \)-smooth on \(\{f(x) \leq f(x^{(0)})\} \), #func evals:

\[
k = O\left(\log M \left[\frac{1}{\log \frac{1}{\beta}}\right] \frac{1}{\alpha} \max\left(\frac{1}{M}, \frac{1}{\beta}\right) \kappa \log\left(\frac{f(x^{(0)}) - p^*}{\epsilon}\right)\right)
\]

\(\kappa = M/\mu \)

and additional runtime: \(O\left(n \log M \left[\frac{1}{\log \frac{1}{\beta}}\right] \frac{1}{\alpha} \max\left(\frac{1}{M}, \frac{1}{\beta}\right) \kappa \log\left(\frac{f(x^{(0)}) - p^*}{\epsilon}\right)\right) \)
Is dependence on κ real?

- Yes! Even for quadratic, even with exact linesearch.

Solution:

$$f(x) = \frac{1}{2} x^T H x$$

$$\tilde{f}(\tilde{x}) = f(H^{-1/2}\tilde{x}) = \frac{1}{2} \tilde{x}^T I \tilde{x}$$

$$\tilde{x} = H^{1/2} x$$

Another way to view this: change of basis
Change of variables / basis

\[\tilde{f}(\tilde{x}) = f(H^{-1/2} \tilde{x}) \quad \tilde{x} \leftarrow H^{1/2} x \]

- GD direction:
 \[\Delta \tilde{x} = -\nabla \tilde{f}(\tilde{x}) = -H^{-1/2} \nabla f(H^{-1/2} \tilde{x}) \]

- What’s the update in the original basis?
 \[\tilde{x}^+ \leftarrow \tilde{x} + t\Delta \tilde{x} \quad \equiv \quad x \leftarrow x + t\Delta x \]
 \[\Delta x = H^{-1/2} \Delta \tilde{x} = -H^{-1/2} H^{-1/2} \nabla f(H^{-1/2} \tilde{x}) = -H^{-1} \nabla f(x) \]

- Alternative view: steepest descent w.r.t. \(\|x\|_H \)
Pre-Conditioned Gradient Descent

Init
\[x^{(0)} \in \text{dom}(f) \]
\[H = \nabla^2 f(x^{(0)}) \]

Iterate
\[\Delta x^{(k)} = -H^{-1}\nabla f(x^{(k)}) \]
Set \(t^{(k)} \) by backtracking linesearch with params \(\alpha, \beta \)
\[x^{(k+1)} \leftarrow x^{(k)} + t^{(k)}\Delta x^{(k)} \]