Reading: Chapters 1-6

Problems and Algorithms

- Stable Marriage
 - Men Propose
 - $O(n^2)$
- interval scheduling
 - greedy by finish time
 - $O(n \log n)$
- MST
 - Kruskal (greedy by value)
 - Prim (like Dijkstra)
 - $O(m \log n)$
- weighted matroid
 - greedy by value
 - $O(n \log n)$ usually
- shortest paths
 - Dijkstra
 - $O(m \log n)$
- sorting
 - mergesort
 - $O(n \log n)$
- exponentiation
 - repeated squaring
 - $O(n)$ ($n = \# \text{ bits}$)
- integer multiply
 - D&C alg
 - $O(n^{\log_2^3})$
- convolution, poly mult
 - FFT based alg.
 - $O(n \log n)$
- weighted interval scheduling
 - DP
 - $O(n \log n)$
- integer knapsack
 - DP
 - $O(n \mathcal{C})$
Techniques

• greedy
 • runtime: by progress.
 • correctness: greedy stays ahead or greedy is optimal.

• divide and conquer
 • correctness: by induction.
 • runtime: by recurrences
 • subproblems form tree

• dynamic programming
 • correctness: by induction.
 • runtime: count subproblems (size of memoization table \times cost to combine)
 • subproblems form DAG.

Algorithm Design Flow Chart

[model problem]
|
|
<does greedy work>--------------/
|
| no yes
|
| [find subproblem] |
|
|
| indep | dep |
|
| [divide & conquer] [dynamic prog] |
|
|
| \ | / |
\ | / |--->[problem solved]<--/