Reading: 11.0-11.3

Announcements:

- homework due Tuesday; no extension.
- extra credit due Tuesday.
- Algorithms Coffee 10-11am, Wednesday, Ford 3rd floor lounge.

Last time:

- NP \leq_p CIRCUIT-SAT \leq_p 3-SAT

Today:

- approximation
- metric TSP

Approximation Algorithms

“instead of computing an optimal solution is NP-complete, try to compute an approximately optimal solution instead”

Def: A is an β-approximation the value of its solutions is at most βOPT (minimization problems)

(at most OPT/β for maximization problems)

Question: how well can we approximate NP-complete problems?

\[1 + \epsilon \text{ const log linear inapprox} \]

Knapsack METRIC-TSP TSP
Metric TSP

Def: distances are a **metric** if

- symmetry: \(d(u, v) = d(v, u) \)
- triangle inequality: \(d(u, v) \leq d(u, w) + d(w, v) \)

Def: Metric TSP = TSP when edge costs are a metric.

Lemma: MST is smaller than TSP tour.

Proof:

- take any tour
- remove one edge

\(\Rightarrow \) get a tree (degenerate = a line)

\(\Rightarrow \) cost of tour > cost of MST.

Algorithm: METRIC-TSP via MST

1. find MST.
2. double it \(\Rightarrow \) cycle
 (with repeated vertices)
3. remove repeated vertices (short-cut) \(\Rightarrow \) tour.

Example:

- Cycle: ?

Challenge:

- \(\mathcal{NP} \)-hardness \(\Rightarrow \) don’t understand optimal soln’s.
- how can we approximate something we don’t understand?

Approach

1. Bound OPT. E.g., OPT \(\geq \) MST
2. Design alg to approximate bound. E.g., \(A \leq 2 \text{MST} \).

Question: can we approximate (non-metric) TSP?

Lemma: Cannot approximate TSP to any factor unless \(\mathcal{P} = \mathcal{NP} \).

Proof: reduce from Hamiltonian Cycle to \(\alpha \)-approximate-TSP

- convert HC problem \(G' = (V', E') \) to TSP problem \(G, c(\cdot) \)
- \(G \leftarrow \) complete graph on \(V' \).
- set \(c(e) = \begin{cases} 1 & \text{if } e \in E' \\ \alpha n & \text{otherwise} \end{cases} \)
- HC in \(G' \Rightarrow \) TSP of cost \(n \).
- no HC in \(G' \Rightarrow \) TSP of cost \(> \alpha n \).
- \(\alpha \)-approximate TSP distinguishes these two cases.

QED
Example:
Knapsack

input:
- n objects
- sizes s_i (non-negative real number)
- values v_i
- capacity C.

output: subset S that
- fits: $\sum_{i \in S} s_i \leq C$
- maximizes values: $\sum_{i \in S} v_i$.

Note: Knapsack is \mathcal{NP}-complete

Goal: approximation algorithm for knapsack

Step 0: try things that don’t work.

Idea: Greedy by value/size

Example: $v = (2, C)$, $s = (1, C')$

Greedy $\Rightarrow 2$; OPT $\Rightarrow C$.

Step 1: find upper bound.

Fact: optimal fractional knapsack (FOPT) \(\geq\) optimal integral knapsack (OPT)

Step 2: find algorithm to approximate upper bound.

Note: the difference between FOPT and GREEDY is that FOPT adds fraction of last object.

Fact: \(\text{FOPT} \leq \text{GREEDY} + v_{\text{last object}} \cdot \frac{\leq \text{max}_i v_i}{\leq \text{max}_i v_i}\)

So either:
- GREEDY \(\geq\) FOPT/2, or
- \(\max_i v_i \geq \text{FOPT}/2\).

Algorithm: Max or Greedy by value/size

1. run GREEDY.
2. MAX = $\max_i v_i$.
3. if MAX \geq GREEDY, take MAX
4. else, take GREEDY.

Lemma: alg is 2-approximation.

Proof: $\text{ALG} \geq \text{FOPT}/2 \geq \text{OPT}/2$.

4
Pseudo-polynomial Time

“polynomial if numbers in input are written in unary (not binary)”

Integer Knapsack

input: • n objects $S = \{1, \ldots, n\}$
• $s_i =$ size of object i (integer).
• $v_i =$ value of object i.
• capacity C of knapsack (integer)

output: • subset $K \subseteq S$ of objects that
 (a) fit in knapsack together
 (i.e., $\sum_{i \in K} s_i \leq C$)
 (b) maximize total value
 (i.e., $\sum_{i \in K} v_i$)

Greedy fails, e.g.,

• largest value/size:
 $v = (C/2 + 2, C/2, C/2)$.
 $s = (C/2 + 1, C/2, C/2)$.

• smallest value/size:
 $v = (1, C/2, C/2)$.
 $s = (2, C/2, C/2)$.

Find a subproblem:

• consider object $i \in S$.

 • if i not in knapsack:
 value of knapsack is $v_i +$ optimal knapsack value on $S \setminus \{i\}$ with capacity $C - s_i$.

 • if i in knapsack:

Succinct description:

• remaining objects $\{j, \ldots, n\}$ represented by “j”
• remaining capacity represented by $D \in \{0, \ldots, C\}$.

Step I: identify subproblem in English

$OPT(j, D)$

= “value of optimal size D knapsack on $\{j, \ldots, n\}$”

Step II: write recurrence

$OPT(j, D)$

= $\max(v_j + OPT(j + 1, D - s_j), OPT(j + 1, D))$

Step III: base case

$OPT(n + 1, D) = 0 \text{ (for all } D)$

Step IV: iterative DP

Algorithm: knapsack

1. $\forall D$, memo[$n + 1, D] = 0$.
2. for $i = n$ down to 1,
 for $D = C$ down to 0,
(a) if \(i\) fits (i.e., \(s_i \leq D\))

\[
\text{memo}[j, D] = \max[\text{OPT}(j + 1, D), \]
\[
v_j + \text{OPT}(j + 1, D - s_j)]
\]

(b) else,

\[
\text{memo}[j, D] = \text{OPT}(j + 1, D)
\]

3. return \(\text{memo}[1, C]\)

Correctness

induction

Runtime

\[
T(n, C) = O(\# \text{ of subprobs } \times \text{ cost per subprob})
\]
\[
= O(nC).
\]

Note: Knapsack DP is **pseudo-polynomial** time.