Reading: 8.1-8.4

Last time:

- 3-SAT \leq_p INDEPENDENT-SET

Today:

- NP \leq_p CIRCUIT-SAT \leq_p 3-SAT

Notorious Problem: NP

input:

- decision problem verifier program V_P.
- polynomial $p(\cdot)$.
- decision problem instance: x

output:

- “Yes” if exists certificate c such that $V_P(x, c)$ has “verified = true” at computational step $p(|x|)$.
- “No” otherwise.

Problem 4: 3-SAT

input: boolean formula $f(z)$

- in conjunctive normal form (CNF)

output:

- “Yes” if assignment z with $f(z) = T$ exists
- “No” otherwise.

Note: 2 steps to NP-completeness

1. $X \in \mathcal{NP}$
2. X is \mathcal{NP}-hard (via reduction)

3 steps to reduction

1. construction
2. runtime of construction
3. correctness of construction (iff)

Note: algorithms in reductions:

<table>
<thead>
<tr>
<th>3-SAT</th>
<th>INDEPENDENT-SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>input: f \Rightarrow G,D</td>
<td>output: z \iff S</td>
</tr>
</tbody>
</table>
Circuit Satisfiability

Example:

️

Problem 4: CIRCUIT-SAT

input: boolean circuit $Q(z)$

- directed acyclic graph $G = (V, E)$
- internal nodes labeled by logical gates:
 - “and”, “or”, or “not”
- leaves labeled by variables or constants
 T, F, z_1, \ldots, z_n.
- root r is output of circuit

output:

- “Yes” if exists z with $Q(z) = T$
- “No” otherwise.

Lemma: CIRCUIT-SAT is \mathcal{NP}-hard.

Proof: (reduce from NP)

- goal: convert NP instance (V_P, p, x) to CIRCUIT-SAT instance Q
- $V_P(\cdot, \cdot)$ polynomial time

⇒ computer can run it in poly steps.

- each step of computer is circuit.
- output of one step is input to next step
- unroll $p(|x|)$ steps of computation

⇒ \exists poly-size circuit $Q'(x, c) = V_P(x, c)$

- hardcode x: $Q(c) = Q'(x, c)$
- Conclusion: Q is sat iff exists c with $V_P(x, c) = \text{“verified”}$.

QED
LE3-SAT

“CIRCUIT-SAT \leq_P LE3-SAT \leq_P 3-SAT”

Problem 5: LE3-SAT

“like 3-SAT but at most 3 literals per or-clause”

Note: \leq_P is transitive: if $Y \leq_P X$ and $X \leq_P Z$ then $Y \leq_P Z$.

Recall: NP \leq_P CIRCUIT-SAT

Plan: CIRCUIT-SAT \leq_P LE3-SAT \leq_P 3-SAT

Lemma: CIRCUIT-SAT \leq_P LE3-SAT

Example:

Proof: (reduce from CIRCUIT-SAT)

Step 1: convert CIRCUIT-SAT instance Q into 3-SAT instance f

- variables x_v for each vertex of Q.
- encode gates
 - not: if v not gate with input from u
 - or: if v is or gate from u to w need $x_v = x_u
 - and: if v is and gate from u to w need $x_v = x_u \land x_w$
 - 0: if v is 0 leaf.

<table>
<thead>
<tr>
<th>$x_v \setminus x_u x_w$</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\Rightarrow add clauses $(x_v \lor x_u \lor x_w) \land (x_v \lor \bar{x}_u) \land (x_v \lor \bar{x}_w)$
⇒ add clause \((\bar{x}_v)\)
need \(x_v = 1\)

- **1:** if \(v\) is 1 leaf.
⇒ add clause \((x_v)\)

- **literal:** if \(v\) is literal \(z_j\)
⇒ do nothing

- **root:** if \(v\) is root

generate:

\[
\text{output} \\
\begin{array}{c}
x_v \\
v
\end{array}
\]
need \(x_v = 1\)
⇒ add clause \((x_v)\).

Step 2: construction is polynomial time.

- at most 3 clauses in \(f\) per node in \(Q\).

Step 3: construction is correct (i.e., \(Q\) is sat iff \(f\) is sat.)

- \(f\) constrains variables \(v_i\) to “proper circuit outcomes”.
- if exists \(z\) s.t. \(f(z) = T\),
then can read \(x\) from \(z\) and \(z\) encodes proper circuit outcome to make \(Q\) output \(T\) for this \(x\).
- if \(Q\) outputs \(T\) for some \(x\)
then can map \(x\) and values at nodes to variables \(z\) such that \(f(z)\) is true.

Lemma: \(\text{LE3-SAT} \leq_p \text{3-SAT}\)

Step 1: convert LE3-SAT instance \(f'\) into 3-SAT instance \(f\)

- \(f \leftarrow f'\)
- add variables \(w_1, w_2\)
- add \(w_i\) to 1- and 2-clauses
\((l_1) \Rightarrow (l_1 \lor w_1 \lor w_2).\)
\((l_1 \lor l_2) \Rightarrow (l_1 \lor l_2 \lor w_1).\)
- ensure \(w_i = 0\) add variables \(y_1, y_1\) and clauses:
\((\bar{w}_i \lor y_1 \lor y_2)\)
\((\bar{w}_i \lor \bar{y}_1 \lor y_2)\)
\((\bar{w}_i \lor y_1 \lor \bar{y}_2)\)
\((\bar{w}_i \lor \bar{y}_1 \lor \bar{y}_2)\)

Step 2: construction is polynomial time.

Step 3: \(f\) is sat iff \(f'\) is sat.

- given satisfying assignment \((\bar{z}, w_1, w_2, y_1, y_2)\) to \(f\),
⇒ \(w_i = F\) by construction.
⇒ \(f(\bar{z}, F, F, y_1, y_2) \Rightarrow f(\bar{z})\)
⇒ \(f\) is sat.
- given satisfying assignment \(\bar{z}\) to \(f'\),
 - \(f(\bar{z}, w_1, w_2, y_1, y_2) \Rightarrow \text{“clauses with only } w_i \text{ and } y_i\)"
 - set \(w_i = F\) and \(y_i = F\) (or anything) to satisfy.

QED