Reading: 8.1-8.4

Last time:

- NP-completeness
- “notorious problem” NP.
- reductions from 3-SAT.

Today:

- INDEP-SET \leq_P 3-SAT
- NP \leq_P CIRCUIT-SAT \leq_P 3-SAT

Problem 1: Independent Set (INDEP-SET)

input: $G = (V, E)$

output: $S \subset V$

- satisfying $\forall v \in S$, $(u, v) \notin E$
- maximizing $|S|$.

Problem 4: 3-SAT

input: boolean formula $f(z)$

- in conjunctive normal form (CNF)
- three literals per or-clause
- or-clauses anded together.

output:

- “Yes” if assignment z with $f(z) = T$ exists
- “No” otherwise.
Independent Set

Recall: INDEP-SET (decision problem)

input: $G = (V, E), k$

output: $S \subset V$

- satisfying $\forall v \in S, \ (u, v) \not\in E$
- $|S| \geq k$

Lemma: INDEP-SET is NP-hard.

Proof: (reduction from 3-SAT)

Step 1: convert 3-SAT instance f into INDEP-SET instance (G, k)

- vertices v_{ij} correspond to literals l_{ij}
- edges for:
 - clause (in triangle)
 “at most one vertex selected per clause”
 - conflicted literals.
 “vertices for conflicting literals cannot be selected”
- “vertex v_{ij} is selected” \Rightarrow “literal l_{ij} is true”.
- “indep set of size m \Leftrightarrow “satisfying assignment”

Example: $f(z_1, z_2, z_3, z_4) = (z_1 \lor z_2 \lor z_3) \land (\overline{z}_2 \lor \overline{z}_3 \lor \overline{z}_4) \land (\overline{z}_1 \lor \overline{z}_2 \lor \overline{z}_4)$

Step 2: construction is polynomial time.

- one vertex per literal.

Step 3: show construction correct.

(a) if f is satisfiable then G has indep. set size $\geq m$.

- f is sat
 \Rightarrow exists z so each clause is true.
- let S' be nodes in G corresponding to true literals.
- if more than one node in S' in same triangle drop all but one.
 \Rightarrow S.
- $|S| = m$.
- for all $u, v \in S$,
 - $u \& v$ not in same triangle.
 - l_u and l_v both true
 \Rightarrow must not conflict
 \Rightarrow no (l_u, l_v) edge in G.
 - so S is independent.

(b) if G has indep. set S size $\geq m$ then f is satisfiable.

(a) construct assignment z from S

For each z_r

- if nodes in S are labeled by z_r (but not \overline{z}_r)
 \Rightarrow set $z_r = 1$
- if nodes in S are labeled by \overline{z}_r (but not z_r)
 \Rightarrow set $z_r = 0$
- if no $v \in S$ is labeled z_r or \overline{z}_r
 \Rightarrow set $z_r = 1$ (or 0, doesn’t matter)
Note: no two nodes $u, v \in S$ labeled by both z_r or \bar{z}_r, if so, there is (u, v) edge so S would not be independent.

(b) $f(z) = T$:

- S has $|S| \geq m$
- can have at most one node from each triangle
 - \Rightarrow have exactly one from each triangle
 - $\Rightarrow |S| = m$
- $v \in S$ means literal l_v is true.
 - \Rightarrow one true literal per clause
 - $\Rightarrow f(z) = T$.

QED
Circuit Satisfiability

Example:

\[\neg \lor \land \lor F \land \lor T \land z_1 \land z_2 \land z_3 \]

Problem 4: CIRCUIT-SAT

input: boolean circuit \(Q(z) \)

- directed acyclic graph \(G = (V, E) \)
- internal nodes labeled by logical gates:
 - “and”, “or”, or “not”
- leaves labeled by variables or constants
 \(T, F, z_1, \ldots, z_n \).
- root \(r \) is output of circuit

output:

- “Yes” if exists \(z \) with \(Q(z) = T \)
- “No” otherwise.

Lemma: CIRCUIT-SAT is \(\mathcal{NP} \)-hard.

Proof: (reduce from NP)

- goal: convert NP instance \((VP, p, x) \) to CIRCUIT-SAT instance \(Q \)
- \(VP(:, :) \) polynomial time
3-SAT

Problem 4: 3-SAT

input: boolean formula $f(z)$
- in conjunctive normal form (CNF)
- three literals per or-clause
- or-clauses anded together.

output:
- “Yes” if assignment z with $f(z) = T$ exists
- “No” otherwise.

Problem 5: LE3-SAT

“like 3-SAT but at most 3 literals per or-clause”

Note: \leq_P is transitive: if $Y \leq_P X$ and $X \leq_P Z$ then $Y \leq_P Z$.

Recall: NP \leq_P CIRCUIT-SAT

Plan: CIRCUIT-SAT \leq_P LE3-SAT \leq_P 3-SAT

Lemma: LE3-SAT \leq_P 3-SAT

Step 1: convert LE3-SAT instance f' into 3-SAT instance f
- $f \leftarrow f'$
- add variables w_1, w_2
- add w_i to 1- and 2-clauses
 $$(l_1) \Rightarrow (l_1 \lor w_1 \lor w_2).$$
 $$(l_1 \lor l_2) \Rightarrow (l_1 \lor l_2 \lor w_1).$$
- ensure $w_i = 0$ add variables y_1, y_1 and clauses:
 $$(\bar{w}_i \lor y_1 \lor y_2)$$
 $$(\bar{w}_i \lor \bar{y}_1 \lor y_2)$$
 $$(\bar{w}_i \lor y_1 \lor \bar{y}_2)$$
 $$(\bar{w}_i \lor \bar{y}_1 \lor \bar{y}_2)$$

Step 2: construction is polynomial time.

Step 3: f is sat iff f' is sat.
- given satisfying assignment $(\bar{z}, w_1, w_2, y_1, y_2)$ to f,
 $\Rightarrow w_i = F$ by construction.
 $\Rightarrow f(\bar{z}, F, F, y_1, y_2) \overset{\text{simplify}}{\Rightarrow} f(\bar{z})$
 $\Rightarrow f$ is sat.
- given satisfying assignment \bar{z} to f',
 $f(\bar{z}, w_1, w_2, y_1, y_2) \overset{\text{simplify}}{\Rightarrow} \text{“clauses with only } w_i \text{ and } y_i\text{”}$
 $\Rightarrow w_i = F$ and $y_i = F$ (or anything) to satisfy.

QED
Example:

![Circuit Diagram]

Proof: (reduce from CIRCUIT-SAT)

Step 1: convert CIRCUIT-SAT instance Q into 3-SAT instance f

- variables x_v for each vertex of Q.
- encode gates
 - **not:** if v not gate with input from u
 - need $x_v = \overline{x_u}$

x_v	x_u
0	1
1	0

 ⇒ add clauses $(x_v \lor x_u \lor \overline{x_w}) \land (x_v \lor \overline{x_u}) \land (x_v \lor \overline{x_w})$

- **or:** if v is or gate from u to w
 - need $x_v = x_u \land x_w$

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

- **and:** if v is and gate from u to w
 - need $x_v = x_u \land x_w$

- **0:** if v is 0 leaf.
 - need $x_v = 0$

 ⇒ add clause $(\overline{x_v})$
 - need $x_v = 1$

- **1:** if v is 1 leaf.
 - need $x_v = 1$

- **literal:** if v is literal z_j

 ⇒ do nothing

- **root:** if v is root

 need $x_v = 1$
⇒ add clause \((x_v)\).

Step 2: construction is polynomial time.

- at most 3 clauses in \(f\) per node in \(Q\).

Step 3: construction is correct (i.e., \(Q\) is sat iff \(f\) is sat.)

- \(f\) constrains variables \(v_i\) to “proper circuit outcomes”.

- if exists \(z\) s.t. \(f(z)\) is \(T\),

 then can read \(x\) from \(z\) and \(z\) encodes proper circuit outcome to make \(Q\) output \(T\) for this \(x\).

- if \(Q\) outputs \(T\) for some \(x\)

 then can map \(x\) and values at nodes to variables \(z\) such that \(f(z)\) is true.

QED

Lemma: 3-SAT is in NP

Proof: Certificate is assignment \(z\).

Theorem: 3-SAT is NP-complete.

Proof: from lemmas.

Note: 2 steps to NP-completeness

1. \(X \in \mathcal{NP}\)
2. \(X\) is \(\mathcal{NP}\)-hard (via reduction)

3 steps to reduction

1. construction
2. runtime of construction
3. correctness of construction (iff)