Reading: 7.0-7.5

Last time:
- Network flow defn
- Bipartite matching reduction.

Today:
- Network flow
- duality: max flow = min cut

Algorithm: Ford-Fulkerson

- \(f \leftarrow \text{null flow.} \)
- \(G_f \leftarrow G. \)
- while exists \(s-t \) path \(P \) in \(G_f \) (by BFS)
 - augment \(f \) with \(P \).
 - \(G_f \leftarrow \text{residual graph for } G \text{ and } f. \)
- return \(f. \)

Example:

```
[Diagram of a network flow graph with nodes s, b, a, t and edges with capacities 20, 10, 30, 10, 20, 10]
```

Max flow = 30.
Network Flow

Example:

```
   20
  /   \
 /     /\  
 s     a  b
   \   /  \ 
    10/    10
     \    \
      \   t
       30
```

Max flow = 30.

Idea: repeatedly push flow on s-t paths until can’t push anymore.

Example: Push 20 on P = (s, a, b, t)

```
   0
  /   \ 10
 /     /  \ 
 s     a  b
   \   /  \ 
    10/    10
     \    \
      \   t
       30
```

Note: when pushing flow, we can undo flow already pushed.

Def: the residual graph G_f for flow f on G is the graph that represents capacity constraints for flows after pushing f.

Example: G_f after pushing 20 on $P = (s, a, b, t)$

```
   20
  /   \
 /     /\  
 s     a  b
   \   /  \ 
    20/    10
     \    \
      \   t
       20
```

Construction: $G_f = (V, E_f), c_f(\cdot)$:
For each $e = (u, v) \in E$,
(if $f(e) = c(e)$ discard e)

- if $f(e) < c(e)$,
 - add e to E_f
 - $c_f(e) = c(e) - f(e)$
- if $f(e) > 0$
 - let $e' = (v, u)$
 - add e' to E_f
 - $c_f(e') = c(e') + f(e)$

Def: the bottleneck capacity of s-t path P in G_f is minimum residual capacity of any edge in P.

Def: an augmenting path P in a residual graph G_f is a path with positive bottleneck capacity.

Example: G_f after pushing 20 on $P = (s, a, b, t)$

```
   0
  /   \ 10
 /     /  \ 
 s     a  b
   \   /  \ 
    10/    20
     \    \
      \   t
       20
```

Augmenting path $P = b(s, b, a, t)$ with bottleneck capacity 10.

Augment f with flow of 10 on P:
- $f(s, b) \leftarrow f(s, b) + 10$
- $f(a, b) \leftarrow f(a, b) - 10$
- $f(a, t) \leftarrow f(a, t) + 10$

Note: can find augmenting paths with BFS.

Algorithm: Augment f with P
- $b = $ bottleneck(P, G_f).
• for e in P:
 • if e a forward edge:
 \[f(e) \leftarrow f(e) + b \]
 • if e a back edge:
 let $e' = \text{back edge}$
 \[f(e') \leftarrow f(e) - b. \]

Example: G_f after augmenting with $P = (s, b, a, t)$

No more augmenting paths!

Algorithm: Ford-Fulkerson

- $f \leftarrow \text{null flow}$.
- $G_f \leftarrow G$.
- while exists s-t path P in G_f (by BFS)
 - augment f with P.
 - $G_f \leftarrow \text{residual graph for } G \text{ and } f$.
- return f.

Runtime

Each iteration:

- construct G_f: $O(m)$.
- find P: $O(m)$.
- augmentation: $O(n)$.
- (Total: $O(m)$)

Fact: the value of flow increases by bottleneck capacity in each iteration.

Theorem: if C is upper bound on max flow and all capacities are integral then algorithm terminates in $O(C)$ iterations with runtime $O(mC)$

Proof: (by “measure of progress”)

1. bottleneck capacities integral:
 - current residual capacities integral
 \[\Rightarrow \text{integral bottleneck capacity} \]
 \[\Rightarrow \text{next residual capacities integral} \]
 - induction!
2. bottleneck capacities ≥ 1
3. flow increases by 1 each iteration
4. terminates in $\leq C$ iterations.

QED

Note: $C \leq \sum_{e \text{ out of } s} c(e)$.

Note: Clever choice of augmenting paths gives runtime $O(m^2 \log C)$.

Correctness

1. f is feasible.
2. f is optimal.

Lemma: f is feasible.

Proof: induction!
Max flow = min cut

“duality: for maximization problem there is corresponding minimization problem”

Recall: an s-t cut \((A,B)\) is partition of \(V\) into \(A\) and \(B\) with \(s \in A\) and \(t \in B\).

Def: the capacity of cut \((A,B)\) is
\[c(A,B) = \sum_{e \text{ from } A \text{ to } B} c(e) \]

Goal: flow algorithm is optimal

Proof Approach: primal = dual.

Claim 1: any flow \(f\) and any cut \((A,B)\) then
\[|f| \leq c(A,B). \]

Claim 2: for flow \(f^*\) with no augmenting path in \(G_{f^*}\) then exists cut \((A^*,B^*)\) with
\[|f^*| = c(A^*,B^*) \]

Picture:

* cuts **
**** **
*** ***
*** *
***** *
* flows ***

Proof: (of theorem)

- all flows \(|f| \leq c(A^*,B^*) \leq |f^*|\). by Claim 1 by Claim 2

Corollary: value of max flow = capacity of min cut

Lemma: for any flow \(f\), cut \((A,B)\) then,
\[|f| = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \]

Proof: (by picture, see text for formal proof)

Proof: (of Claim 1)

From Lemma:
\[|f| = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \]
\[\leq \sum_{e \text{ out of } A} f(e) \]
\[\leq \sum_{e \text{ out of } A} c(e) \]

Proof: (of Claim 2) no s-t path in \(G_f\):

- let \(A^*\) be vertices connected to \(s\).
 \(B^* = V \setminus A^*\)
- \((A^*,B^*)\) is cut:
 - \(s \in S^*\)
 - \(t \in B^*\)
- for all \(e = (u,v)\) out of \(A^*\) in \(G\):
 - \(e \notin G_f\)
 \[\Rightarrow f^*(e) = c(e) \]
- for all \(e = (u,v)\) in to \(A^*\) in \(G\):
 - \(e' = (v,u) \notin G_f\)
 \[\Rightarrow f^*(e) = 0 \]

Lemma
\[\Rightarrow |f| = \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ in to } A^*} f(e) \]
\[= \sum_{e \text{ out of } A^*} c(e) - 0 \]
\[= c(A^*,B^*) \]

Summary

- algorithm: augmenting paths in residual graph.
- correctness: max-flow min-cut theorem.
- many problems can be reduced to network flows.
- entire courses on network flows.