Reading: 6.4, 6.8

Last time:

- Integer Knapsack
- Interval Pricing
- “finding a first decision”

Today:

- Shortest Paths.

Suggested Approach

I. identify subproblem in english

\[\text{OPT}(i) = \text{“optimal schedule of } \{i, \ldots, n\} \text{ (sorted by start time)”} \]

II. specify subproblem recurrence

\[\text{OPT}(i) = \max(\text{OPT}(i + 1), v_i + \text{OPT(\text{next}(i))}) \]

III. identify base case

\[\text{OPT}(n + 1) = 0 \]

IV. write iterative DP.

(see last thurs)

Finding Optimal Schedule

“traverse memoization table to find schedule”

Algorithm: schedule

\[i = 1 \]

\[\text{while } i < n \]

\[\text{if memo}[i + 1] < v_i + \text{memo}[\text{next}(i)] \]

\[\text{schedule } i; \ i \leftarrow \text{next}(i). \]

\[\text{else} \]

\[i \leftarrow i + 1. \]

\[\text{endif} \]

endwhile
Shortest Paths with Negative Weights

“e.g., currency exchange: nodes are currencies, path weights are exchange rates, minimize product of path weights.”

Note: to minimize product of path weights, can minimize sum of logs of path weights.

Example: \[r_1 r_2 = 2^{\log_2 r_1} 2^{\log_2 r_2} = 2^{\log_2 r_1 + \log_2 r_2}. \]

Note: if \(r \leq 1 \) then \(\log r \) is negative.

Recall: Dijkstra’s Algorithm

1. initialize known distance from \(s \) as \(\infty \), except \(d(s) = 0 \)
2. take closest unknown vertex \(v \)
 (a) declare \(v \) known.
 (b) update known distances to neighbors of \(v \) if closer via \(v \).
3. repeat (2) until \(t \) known.

Example:

Example 1: (Dijkstra Fails)

Dijkstra’s Path: \(d(s-a-t) = 3 \)
Shortest Path: \(d(s-a-b-t) = 2 \).

Example 2: (may not exist)

Negative cycle \(\Rightarrow \) no shortest path.

First try:

• find most negative edge “\(-c\)”
• add \(c \) to all edges.
• run Dijkstra

Example: (apply to Example 1)

Second Try: Dynamic programming

subproblem:

\[\text{OPT}(v) = \text{shortest path from } v \text{ to } t. \]

\[= \min_{u \in N(v)} [c(v, u) + \text{OPT}(u)]. \]

Example:

Subproblems have cyclic dependencies!
Imposing measure of progress

“parameterize subproblems to keep track of progress”

Lemma: if G has no negative cycles, then minimum cost path is simple (i.e., does not repeat nodes); therefore, it has at most $n - 1$ edges.

Proof: (contradiction)

- let P be the min-length path with fewest number of edges.
- suppose (for contradiction) that P is not simple.
 $\Rightarrow P$ repeats a vertex v.
- no negative cycle \Rightarrow path from v to v non-negative.
 \Rightarrow can “splice out” cycle and not increase length.
 \Rightarrow new path has fewer edges than p.

Idea: if simple path goes $s \rightsquigarrow v \rightarrow u \rightsquigarrow t$ then $u-t$ path has one fewer edge than v-t path.

Part I: identify subproblem in english

$$\text{OPT}(v, k)$$

= “length of shortest path from v to t with at most k edges.”

Part II: write recurrence

$$\text{OPT}(v, k)$$

= $\min_{u \in \mathcal{N}(v)} [c(v, u) + \text{OPT}(u, k - 1)]$

Part III: base case

- for all k: $\text{OPT}(t, k) = 0$.
- for all $v \neq t$: $\text{OPT}(v, 0) = \infty$.

Part IV: iterative DP

Algorithm: Bellman-Ford

1. initialize

 - for all k: memo$[t, k] = 0$.
 - for all $v \neq t$: memo$[v, 0] = \infty$.

2. for $k = 1$ up to $n - 1$, for all v

 $\text{memo}[v, k] = \min_{u \in \mathcal{N}(v)} \text{OPT}(u, k - 1)$.

3. return memo$[s, n - 1]$.

Example:

$$\begin{array}{|c|c|c|c|c|}
\hline
 & 0 & 1 & 2 & 3 \\
\hline
s & \infty & \infty & 3 & 2 \\
a & \infty & 2 & 1 & 1 \\
b & \infty & -2 & -2 & -2 \\
t & 0 & 0 & 0 & 0 \\
\hline
\end{array}$$

Correctness

lemma + induction.
Runtime

\[T(n, m) = \text{”size of table”} \times \text{”cost per entry”} = O(n^3) \]

(better accounting: \(T(n, m) = O(n^2 + nm) = O(nm) \))