Reading: 4.4.

Last Time:

- greedy-by-value
- MST
- matroid

Today:

- dynamic greedy
- shortest paths, MSTs
Dynamic Greedy Algorithms

“adjust ordering dynamically as greedy algorithm proceeds”

Template: \hspace{3em} Repeat:

\begin{itemize}
\item Process minimal element by metric.
\item Adjust metric on remaining elements.
\end{itemize}

Note: priority queues useful for dynamic greedy algs.

Def: priority queue data structure

Operations:

\begin{itemize}
\item insert\((v, k)\): adds elt \(v\) to queue with key \(k\) (priority)
\item decreasekey\((v, k)\): decreases the key of \(v\) to \(k\)
\hspace{2.5em} (if key is less than \(k\), leave it the same)
\item deletemin: returns elt with minimum key.
\end{itemize}

Runtimes:

\begin{itemize}
\item can implement all operations in \(O(\log n)\)
Shortest Paths

“find short path from vertex s to t in graph”

E.g., driving directions, Internet routing.

Example:

![Graph Diagram]

Idea: given known distance to closest $S \subset V$, then distance of closest neighbor of S to s can be found. Then, induction.

Metric: shortest one-hop distance from vertices with known distances.

Update: (after processing vertex v)

- v’s distance is known.
- update metric on unknown vertices if one-hop path from v is shorter.

Algorithm: Dijkstra’s Shortest Path Alg (w. Priority Q)

1. initialize

 (a) for all v, insert(v, ∞)

 (b) decreasekey($v, 0$)

2. while queue not empty

 (a) $(v, d) = \text{deletemin}()$

 (b) if $v = t$, return d.

 (c) for each neighbor u of v:

 decreasekey($u, d + c(v, u)$)

Runtime: $T(n, m) = m \log n$.

Correctness

Theorem: Dijkstra is optimal

Proof: (by induction on known vertices, see text)
MSTs, revisited

Idea: grow tree from s by adding cheapest new vertex.

Note: as we add vertices, must reevaluate cost of vertices.

Example:

```
1  2  3  5  6
  
4
```

Idea: grow tree from start vertex adding closest vertex to any vertex in tree

Metric: minimum one-hop distance to any vertex in current tree.

Update: (after processing vertex v)
- add v to tree.
- update metric on non-tree vertices if one-hop distance to v is shorter.

Algorithm: Prim’s MST Alg

1. initialize
 (a) for all v, insert(v, ∞)
 (b) decreasekey($v, 0$)
2. while queue not empty
 (a) $(v, d) = \text{deletemin}()$
 (b) for each neighbor u of v:
 decreasekey($u, c(v, u)$)

Runtime: $T(n, m) = O(n \log m)$

Correctness

Def: $A, B \subseteq V$ is a cut if $A \cup B = \emptyset$ and $A \cap B = E$. Edge $e = (u, v)$ crosses cut if $u \in A$ and $v \in B$ (or vice versa).

Lemma: (cut lemma) For any (A, B)-cut and $e' = (u, v)$ the min cost edge crossing cut, e' is in every MST.

Proof: (contradiction)

Conclusion: each edge Prim adds is minimum edge on cut, therefore Prim never adds wrong edge.