Reading: 4.5-4.6, MIT notes on matroids.

Last Time:
- greedy-by-value
- MST

Today:
- MST / matroid (cont.)
- dynamic greedy
- shortest paths, MSTs

Algorithm: Greedy-by-Value
1. $S = \emptyset$
2. Sort elts by decreasing value.
3. For each elt e (in sorted order):
 - if $\{e\} \cup S$ is feasible
 - add e to S
 - else discard e.

Example 2: minimum spanning tree

input:
- graph $G = (V, E)$
- costs $c(e)$ on edges $e \in E$

output: spanning tree with minimum total cost.
Structural Observations about Forests

Def: \(G' = (V, E') \) is a subgraph of \(G = (V, E) \) if \(E' \subseteq E \).

Def: An acyclic undirected graph is a forest.

Fact 1: an MST on \(n \) vertices has \(n - 1 \) edges.

Lemma 1: If \(G = (V, F) \) is a forest with \(m \) edges then it has \(n - m \) connected components.

Proof: Induction (on number of edges)

base case: 0 edges, \(n \) CCs.

IH: assume true for \(m \).

IS: show true for \(m + 1 \)

- IH \(\Rightarrow n - m \) CCs
- add new edge.
 - must not create cycle
 \(\Rightarrow \) connects two connected components.
 \(\Rightarrow \) these 2 CCs become 1 CC.
 \(\Rightarrow n - m - 1 \) CCs.

\(\blacksquare \)

Lemma 2: (Augmentation Lemma) If \(I, J \subset E \) are forests and \(|I| < |J| \) then exists \(e \in J \setminus I \) such that \(I \cup \{e\} \) is a forest.

Proof:

Lemma 1

\(\Rightarrow \) \# CCs of \((V, I) > \# \) CCs of \((V, J) \geq \# \)

CCs of \((V, I \cup J) \)
Correctness

“output is tree and has minimum cost”

Goal: understand why greedy-by-value works.

Lemma 1: Greedy outputs a forest.
Proof: Induction.

Lemma 2: if G is connected, Greedy outputs a tree.
Proof: (by contradiction)

Theorem: Greedy-by-Value is optimal for MSTs

Approach: “greedy stays ahead”

Proof: (by contradiction of first mistake)

- Greedy and OPT have $n - 1$ edges (Fact 1)
- Let $I = \{i_1, \ldots, i_{n-1}\}$ be elt’s of Greedy.
 (in order)
- Let $J = \{j_1, \ldots, j_{n-1}\}$ be elt’s of OPT.
 (in order)
- Assume for contradiction: $c(I) > c(J)$
- Let r be first index with $c(j_r) < c(i_r)$
- Let $I_{r-1} = \{i_1, \ldots, i_{r-1}\}$
- Let $J_r = \{j_1, \ldots, j_r\}$
- $|I_{r-1}| < |J_r|$ & Augmentation Lemma
 \[\Rightarrow \] exists $j \in J_r \setminus I_{r-1}$
 such that $I_{r-1} \cup \{j\}$ is acyclic.
Matroids

Def: A set system $M = (E, \mathcal{I})$ where

- E is ground set.
- $\mathcal{I} \subseteq 2^E$ is set of compatible subsets of E.

Question: When does greedy-by-value algorithm work?

Question: What properties of MSTs were necessary for greedy-by-value to work?

Answer:

- MSTs are same size (Fact 1)
- augmentation property (Lemma 2)
- downward closure (Fact 2)

Note: augmentation property implies Fact 1.

Def: A matroid is a set system $M = (E, \mathcal{I})$ satisfying:

M1 “subset property”
if $I \in \mathcal{I}$, all subsets of I are in \mathcal{I}.

M2 “augmentation property”
if $I, J \in \mathcal{I}$ and $|I| < |J|$, then exists $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$.

(compatible sets also called independent sets).

Corollary: acyclic subgraphs are a matroid.

Theorem: greedy algorithm is optimal iff feasible outputs are a matroid.

Proof:

- (\Rightarrow) same as for Theorem 1.
- (\Leftarrow) homework.

Conclusion: to see if greedy-by-value works, check matroid properties.
Dynamic Greedy Algorithms

“adjust ordering dynamically as greedy algorithm proceeds”

Template: Repeat:
 • Process minimal element by metric.
 • Adjust metric on remaining elements.

Note: priority queues useful for dynamic greedy algs.

Def: priority queue data structure

Operations:
 • insert(v,k): adds elt v to queue with key k (priority)
 • decreasekey(v,k): decreases the key of v to k
 (if key is less than k, leave it the same)
 • deletemin: returns elt with minimum key.

Runtimes:
 • can implement all operations in $O(\log n)$
Shortest Paths

“find short path from vertex \(s \) to \(t \) in graph”
E.g., driving directions, Internet routing.

Example:

\[\begin{array}{ccc}
 & 2 & \\
 s & v_1 & 2 \\
 3 & & 2 \\
 v_4 & 4 & t \\
 2 & & \\
 v_2 & & v_3
\end{array} \]

Idea: given known distance to closest \(S \subset V \),
then distance of closest neighbor of \(S \) to \(s \) can
be found. Then, induction.

Metric: shortest one-hop distance from vertices with known distances.

Update: (after processing vertex \(v \))

- \(v \)'s distance is known.
- update metric on unknown vertices if one-hop path from \(v \) is shorter.

Algorithm: Dijkstra’s Shortest Path Alg (w. Priority Q)

1. initialize
 (a) for all \(v \), insert(\(v, \infty \))
 (b) decreasekey(\(v, 0 \))
2. while queue not empty
 (a) \((v,d) = \text{deletemin()} \)
 (b) if \(v = t \), return \(d \).
 (c) for each neighbor \(u \) of \(v \):
 decreasekey(\(u, d + c(v, u) \))

Runtime: \(T(n, m) = m \log n \).

Correctness

Theorem: Dijkstra is optimal

Proof: (by induction on known vertices, see text)
MSTs, revisited

Idea: grow tree from s by adding cheapest new vertex.

Note: as we add vertices, must reevaluate cost of vertices.

Example:

```
1     2     3     5
   \   /   \   /   /
    4   6
```

Idea: grow tree from start vertex adding closest vertex to any vertex in tree

Metric: minimum one-hop distance to any vertex in current tree.

Update: (after processing vertex v

- add v to tree.
- update metric on non-tree vertices if one-hop distance to v is shorter.

Algorithm: Prim’s MST Alg

1. initialize
 (a) for all v, insert(v, ∞)
 (b) decreasekey($v, 0$)
2. while queue not empty
 (a) $(v, d) = \text{deletemin}()$
 (b) for each neighbor u of v:
 decreasekey($u, c(v, u)$)

Runtime: $T(n, m) = O(n \log m)$

Correctness

Lemma: (cut lemma) For any (A, B)-cut and $e' = (u, v)$ the min cost edge crossing cut, e' is in every MST.

Proof: (contradiction)

Conclusion: each edge Prim adds is minimum edge on cut, therefore Prim never adds wrong edge.