A cool group!

Elliptic curve

\{(x,y) \text{ s.t. } y^2 = x^3 + ax + b \} \cup \{\infty\}

Last time. Fix \(\phi : G \to L \) a group homomorphism

We defined \(\text{Im}(\phi) = \{g \in L \mid \exists g' \in G : \phi(g') = g\} \)

\(\ker(\phi) = \{g \in G \mid \phi(g) = e_L\} \triangleleft G \)

Thm. Fix \(\phi : G \to L \) suppose \(K \leq G \) is a subgroup s.t. \(K \triangleleft \ker(\phi) \).

Then \(\exists ! \varphi : G/K \to L \) s.t. \(\varphi \circ \pi = \phi \) (\(\phi \) factors through \(G/K \))

\[
\begin{array}{ccc}
G & \xrightarrow{\phi} & L \\
\downarrow{\pi} & & \downarrow{\varphi} \\
G/K & \xrightarrow{\exists ! \varphi} & \\
\end{array}
\]

Moreover, when \(K \triangleleft G \), \(\varphi \) is a gp-hom.
Let's study subgroups of an arbitrary G.

To show $\phi: G \to \text{Im}(\phi)$ is surjective:

$\phi(g) = \phi(\text{Im}(\phi)) = e \Rightarrow \exists g \in G$ such that $\phi(g) = e$.

This is a homomorphism by the Universal Property.

$L: \text{ker}(\phi) \to \text{Im}(\phi)$ is an isomorphism.

To show L is injective, it suffices to show $\ker(L) = 1$.

$L(g) = \phi(g) = e \Rightarrow g \in \ker(L)$.

The closed arrow is the unique ϕ.

This is the hypothesis of the theorem.

But here is the cool thing.

But what does it mean for $\ker(\phi) = K$?

It means this diagram commutes.

$L: K \to \text{Im}(\phi)$, ϕ.
Fix \(g \in G \). Then consider the set \(\{ g, g^2, \ldots \} = \langle g \rangle = \{ g^a : a \in \mathbb{Z} \} \).

Defn. We let \(\langle g \rangle = \{ g^a : a \in \mathbb{Z} \} \) and call it the **subgp of** \(G \) **generated by** \(g \).

Prop. Given \(g \in G \), \(\exists \) isomorphism:

\[
\langle g \rangle \cong \mathbb{Z} / \langle n \rangle \mathbb{Z}
\]

for some \(n \geq 0 \).

Prf. The map \(\phi : \mathbb{Z} \to G \) is a gp hom.

\[
a \mapsto g^a
\]

Note: \(\text{Im} (\phi_g) = \{ g^a : a \in \mathbb{Z} \} = \langle g \rangle \).

On the other hand, by the 1st isomorphism thm,

\[
\text{im}(\phi_g) \cong \mathbb{Z} / \ker(\phi_g)
\]

but by the hom any subgroup of the int is \(\equiv n \mathbb{Z} \) for some \(n \). So \(\ker(\phi) = n \mathbb{Z} \). \(\square \)

This number \(n \) is a **p. cool invariant of** \(g \in G \).

Prop. Fix \(g \in G \) and some finite \(n > 0 \). \(\implies \)

(1) \(\langle g \rangle \cong \mathbb{Z} / n \mathbb{Z} \)

(2) \(n \) is the smallest positive int s.t. \(g^n = e \).

(3) \(\ker(\phi_g) = n \mathbb{Z} \) with \(\phi_g \) as above

Ex. In HW you showed if \(|G| = \infty \) and \(\langle g \rangle \) is a subgroup then \(|H| \) divides \(|G| \).

\(\implies \langle \langle g \rangle \rangle \) divides \(|G| \).

Ex. \(G = S_3 \), \(|G| = 6 \). \(\exists \ g \in G \) s.t. \(|g| = 4 \).

Defn. Let \(G \) be a gp. If \(\exists \ g \in G \) s.t. \(\langle g \rangle = G \), \(G \) is called **cyclic**.

Cor. Cyclic groups are isomorphic to \(\mathbb{Z} / n \mathbb{Z} \) for some \(n > 0 \).

Cor. Let \(G \) be a group of order \(p \) where \(p \) is prime. Then \(G \) is iso. to any other gp of order \(p \).

Prf. Choose \(g \in G \) s.t. \(g \neq e \). \(\langle \langle g \rangle \rangle \cong \mathbb{Z} / \{ 1, 2 \} \mathbb{Z} \).

On the other hand \(|\langle g \rangle| \) divides \(|G| \).

\[
|\langle g \rangle| = p
\]

\(\implies \langle g \rangle = G \implies \mathbb{Z} / p \mathbb{Z} \cong G \). \(\square \)

Exs. Try to prove this:

\[
g \text{ has an inverse } g^{-1} \in \langle g \rangle \]

\(g^{-1} = g^a \) so let \(n = a + c \).

\[
bcg^{-1}g = e \rightarrow g^b = e \rightarrow g^{ab} = e
\]

Then \(a + g^a \) is a bijection.

ohh nice.

Defn. If such \(n > 0 \), \(n \) is called the **order of** \(g \).

If \(\langle g \rangle \cong \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} \), the order of \(g \) is called **infinite**.

The order of \(g = \text{size of } \langle g \rangle \).