Last time we covered...

Math 122

- G a group, $H \triangleleft G$ subgroup
 - Note: $G \rightarrow G/H$ is always defined, but H normal $g \mapsto gH$ makes G/H into a group.

- Thus, Assume H is normal in G then the function $G/H \times G/H \rightarrow G/H$ $(gH, g' H) \mapsto gHg'^{-1}H$ is well-defined and makes G/H a group.

- Def. A subgroup H is called normal in G when $gHg^{-1} = H$ for all $g \in G$.
 - ie $\{ x \in G | x = ghg^{-1}, h \in H \}$ (so $g \in G, h \in G, ghg^{-1} \in H$)

Defn. When H is normal we write $H \triangleleft G$, G/H (when $H \triangleleft G$) is called the quotient gp of G by H.

If that this multiplication fn is well defined

Want to prove: if $g_1H = g_1'H$ \iff $\exists h_1 \text{ s.t. } g_1 = g_1'h_1$,

$g_2H = g_2'H$ \iff $\exists h_2 \text{ s.t. } g_2 = g_2'h_2$,

then $g_1g_2H = g_1'g_2'H$ \textbf{Show:} $g_1g_2 = g_1'g_2'h$ for some $h \in H$
We know \(g_1 g_2 = (g_1', h_1)(g_2', h_2) \)
\[= g_1'(g_2' h_1 (g_2')^{-1}) g_2' h_2 \]
\[= g_1' g_2' h_1 h_2 \]
\[= h \quad \text{for } h \in H \]

Since \(H \triangleleft G \): e.g. \(g H g^{-1} = H \)
\[\forall h_1, h \in H, \text{s.t.} \]
\[h_1 = g_2' h_1 (g_2')^{-1} \]
\[\{ H c G_2 H (g_2')^{-1} \} \]

Defn. Fix gp. hom. \(\phi : G \to L \)
The kernel of \(\phi \) is the set
\[\ker \phi = \{ g \in G | \phi(g) = e_L \} \]

Excs. Fix \(\phi : G \to L \)
Prove: \(\phi \) injection
\[\Downarrow \]
\[\ker \phi = \{ e_G \} \]

Pf. (\(\forall \)) \(\phi \) injective \(\Rightarrow \)
\[\phi(g_1) = \phi(g_2) \]
\[\Rightarrow g_1 = g_2 \]
\[\Rightarrow \text{we know } \phi(e_G) = e_L \]
so \(\phi(g_1) = e_L \Rightarrow g_1 = e_G \)

\[(\exists) \quad \text{Suppose } \phi(g_1) = \phi(g_2) \]
\[\Rightarrow \phi(g_2)^{-1} \phi(g_1) = e_L \]
\[\Rightarrow \phi(g_2^{-1} g_1) = e_L \]
\[\Rightarrow g_2^{-1} g_1 \in \ker \phi \]
\[\Rightarrow g_2^{-1} g_1 = e_G \]
\[\Rightarrow g_2 = g_1 \]

Defn. Fix \(\phi : G \to L \) gp hom.
Then the **image** of \(\phi \) is
\[\text{Im}(\phi) = \{ l \in L | l = \phi(g) \text{ for some } g \in G \} \]
Ex 5. (1) \(\text{Im } \phi \subset L \) is a subgroup
(2) \(\ker \phi \subset L \)
(3) \(\ker \phi \triangleleft G \)

Proof. (1) Need to show \(\text{Im } \phi \cong e_L \) is closed under inv. and mult.
\[
\begin{align*}
L &= \phi(g) \implies L^{-1} = \phi(g^{-1}) = \phi(g)^{-1} \\
L_L &= \phi(g_1) \implies L_L L_2 = \phi(g_1) \phi(g_2) \\
&= \phi(g_1 g_2)
\end{align*}
\]
(2) similar
(3) Fix \(g \in G \), \(k \in \ker \phi \)
\[
\begin{align*}
\phi(gk^{-1}) &= \phi(gk) \phi(k^{-1}) \\
&= \phi(g) e_L \phi(g)^{-1} \\
&= e_L
\end{align*}
\]

Remark. Every subgroup \(L' \subset L \) is the image of some group homomorphism.
\[
L' \rightarrow L \\
\begin{cases}
L & \longrightarrow L \\
l & \mapsto \phi(l)
\end{cases}
\]
the inclusion

Thus. (1st isomorphism thm.)
- Fix a homom \(\phi: G \rightarrow L \)
- There exists a natural isomorphism \(G/\ker \phi \cong \text{Im } \phi \) and this is an isomorphism.

Thus Fix \(\phi: G \rightarrow L \) a gp. hom. Assume \(KCG \) is a subgroup s.t. \(KC \triangleleft \ker \phi \)

Thus \(G \twoheadrightarrow \phi \rightarrow L \)

Moreover if \(KCG \) then \(\phi \) is a group homomorphism.

Ex. \(G = \mathbb{Z} \)
\[
\begin{array}{c}
G = \mathbb{Z} \\
\phi: \mathbb{Z} \rightarrow L \\
\downarrow \phi \\
\mathbb{Z}/\ker \phi \\
\downarrow \mathbb{Z}/n \mathbb{Z}
\end{array}
\]
so the fn \(\phi \) actually didn't care about the integer, it just cared about the integer mod \(n \)
pf of \(\exists! \psi\) then

Note that if \(\psi\) exists, it has to be unique because it is a surjection.

Define \(\psi\) to be: \(g_1 k \mapsto \phi(g)\).

Need to show: If \(g_1 k = g_2 k\), \(\psi(g_1) = \psi(g_2)\).

\(g_1 k = g_2 k \Rightarrow g_1 = g_2 k\) for \(k \in K\).

\[\Rightarrow \phi(g_1) = \phi(g_2 k) \]
\[= \phi(g_2) \phi(k) \]
\[= \phi(g_2) e_1 \]
\[= \phi(g_2) \]

\(\square\)

When \(K \vartriangleleft G\) need to show \(\forall g \in G, \psi(g_1 k g_2 k) = \psi(g_1 k) \psi(g_2)\).

\(\psi(g_1 k g_2 k) = (\psi(g_1 g_2 k) = \phi(g_1 g_2)\)

\[= \phi(g_1) \phi(g_2) = (\psi(g_1 k) \psi(g_2 k)\)

"Universal property of quotient groups."