Let M be a mattress. ("mattress" has not been rigorously defined in this class.) The mattress group is the group of symmetries of M — ie, the collection of things we can do to M while M still fits snugly into its frame.

We have the following operations:

In class, we saw:

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>R_x</th>
<th>R_y</th>
<th>R_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>R_x</td>
<td>R_y</td>
<td>R_z</td>
</tr>
<tr>
<td>R_x</td>
<td>R_x</td>
<td>e</td>
<td>R_z</td>
<td>R_y</td>
</tr>
<tr>
<td>R_y</td>
<td>R_y</td>
<td>R_z</td>
<td>e</td>
<td>R_x</td>
</tr>
<tr>
<td>R_z</td>
<td>R_z</td>
<td>R_y</td>
<td>R_x</td>
<td>e</td>
</tr>
</tbody>
</table>
Some principles I stated:
(You can prove these if you want; they're not bad!)

- In a group's multiplication table, each row/column contains each element of \(G \) exactly once. (Use cancellation law).

- If a mult. table is symmetric about diagonal, \(G \) is abelian.

\[\begin{array}{c|ccc}
 & h & \cdots & g \\
\hline
h & h^2 & h_g & \\
h_g & gh & & g^2 \\
\end{array} \]

\[\Rightarrow gh = hg. \]

Example: Mattress group is abelian.