Problem 1: Multiple Choice [20 pts]

a) [5 pts] If the velocity of Bob relative to Faye is \(\overrightarrow{v_{Bob}} \), and the velocity of Ryan relative to Faye is \(\overrightarrow{v_{Ryan}} \), then what is the velocity of Bob relative to Ryan?

A. \(\overrightarrow{v_{Bob}} \)
B. \(\overrightarrow{v_{Ryan}} \)
C. \(\overrightarrow{v_{Bob} + \overrightarrow{v_{Ryan}}} \)
D. \(\overrightarrow{v_{Bob} - \overrightarrow{v_{Ryan}}} \)

b) [5 pts] A car undergoes constant acceleration starting from rest. After a time \(t \), the car has moved a distance \(d \). How long did it take to cover the first \(\frac{d}{2} \) of the trip?

A. \(\frac{t}{4} \)
B. \(\frac{t}{2} \)
C. \(\frac{t}{\sqrt{2}} \)
D. \(\frac{3t}{4} \)

c) [5 pts] The speed of sound in air can depend on the air pressure, \(P \), and on the density of the air, \(\rho \). \(P \) is measured in N/m\(^2\), and \(\rho \) is measured in kg/m\(^3\). Which of the following could be the expression for the speed of sound?

(a) \(\rho P^2 \)
(b) \(\frac{\rho}{P} \)
(c) \(\sqrt{\rho P} \)
(d) \(\frac{P}{\sqrt{\rho}} \)
(e) \(\frac{P^2}{\rho} \)
d) [5 pts] Two children, A (60 kg) and B (45 kg) are seated on two adjacent skateboards that can roll without friction on a horizontal surface. They start out stationary, face-to-face, and then push on each other and roll off in opposite directions: A to the left, and B to the right. Consider the system consisting of both children plus both skateboards. After they push apart, which way does the system’s center of mass move?

 (a) To the left, towards A
 (b) To the right, towards B
 (c) It depends on who pushes harder
 (d) It depends on the final speeds of the two students
 (e) The center of mass does not move at all

Problem 2: Mountain Driving [15 pts]

You are driving your car (mass m) with a constant speed v down a long hill that makes an angle θ from the horizontal. You slam on your brakes, and your tires skid against the pavement with a coefficient of kinetic friction μ_k. (You may ignore air resistance for this problem.)

 a) [5 pts] Draw a clear free-body diagram for your car while it is skidding straight down the hill.

 b) [15 pts] Derive an expression for the distance d required to stop your car, in terms of the mass m, the initial speed v, the angle θ, and the coefficient of kinetic friction μ_k.

Problem 3: Stephanie saves the day [30 pts]

Stephanie Smith, the human cannonball, is in a wheeled cannon mass m_1 hurtling towards the edge cliff at speed v_i. Just before it reaches the edge, the cannon fires Stephanie (who has mass m_2) horizontally forward. As a result, the cannon comes to a stop at the edge of the cliff. Stephanie lands on the ground (miraculously unhurt) at a horizontal distance d from the edge of the cliff, which is a height h above the ground.

a) [20 pts] Determine m_1, the mass of the cannon. You may neglect friction between the cannon and the ground, and air drag on Stephanie. Express your answer in terms of m_2, v_i, d, h, and g.
Problem 2: Stephanie saves the day (cont.)
b) [10 pts] Consider the cannon and Stephanie taken together as a system. At the instant that Stephanie lands, what is the x-coordinate of the system’s center of mass? Let $x = 0$ at the base of the cliff, and express your answer in terms of v_i, g, and h. ($Hint$: we do not want your answer to contain d, m_1, or m_2.)