Streams and Droplets

Fawwaz Habbal
School of Engineering and Applied Sciences
Harvard University
Basic Principles
Field Driven Fluids
Domain of Studies

Fick’s law of diffusion
Concentration \(c \)
- Osmosis
- Convection
- (aqueous) medium, Flow velocity \(v_m \)

Maxwell’s equation
- Electrophoresis
- \(\rho, J \) : source
- E and B field
- Streaming potential

Navier-Stokes’ equation
Electro-Driven Fluids

- Electroosmotic (EO)
- Magnetohydrodynamic (MHD)
- Electrohydrodynamic (EHD)
- Electrowetting
Stokes Radius:

Is the radius of a hard sphere that diffuses at the same rate as the molecule.
A Particle in an Electric Field

Stokes Radius:
Is the radius of a hard sphere that diffuses at the same rate as the molecule.
The behavior of this sphere includes shape effects.
Stokes Radius:
Is the radius of a hard sphere that diffuses at the same rate as the molecule.
The behavior of this sphere includes shape effects.
Stokes radius is usually smaller than the rotational radius.
Stokes Radius:

Is the radius of a hard sphere that diffuses at the same rate as the molecule.

The behavior of this sphere includes shape effects.

Stokes radius is usually smaller than the rotational radius.

Extended molecule have a larger Stokes' radius than the more compact molecule.
Stokes Radius:

Is the radius of a hard sphere that diffuses at the same rate as the molecule.
Stokes Radius
A Particle in an Electric Field

Stokes Radius:
Is the radius of a hard sphere that diffuses at the same rate as the molecule.

In liquids the Stokes' radius (of a perfect sphere) is

\[r = \frac{K_B T}{6\pi \eta D} \]

The frictional coefficient is determined by the size and shape of the molecule under consideration.
Apply a voltage on ions of different charges. They move in different directions.
Assume that no slip at walls, and no shear though out the volume.
Apply a voltage on ions of different charges. They move in different directions.

Assume that no slip at walls, and no shear though out the volume

Rate of flow is linear with driving force (electric field E), Velocity (U) of free charges:

$$U = \mu E \quad qE = (6\pi \eta r)U$$

Mobility $\mu = \frac{q}{6\pi \eta r}$

This is a simplistic view - incorrect, E field is distorted around the particle.
ELECTRICAL DOUBLE LAYER

ELECTRICAL DOUBLE LAYER

- 1879, 1904 Helmholtz and Perrin [Helmholtz, Ann. Phys. Chem. 1879, 337-382; Perrin, Chim. Phys. 1904, 601-651] All counter-ions are ordered in a plane located at a certain distance from the charged surface, and the double layer resembles a flat capacitor, the potential of which depends linearly on the distance between the charged planes.
• 1859,1861 Quinke [Pog. Ann. 1859,107, 1-47; and in 1861,113,513-598] Every charged surface and its counter-ions in the surrounding solution form an electric double layer.

• 1879,1904 Helmholtz and Perrin [Helmholtz, Ann. Phys. Chem. 1879, 337-382; Perrin, Chim. Phys. 1904, 601-651] All counter-ions are ordered in a plane located at a certain distance from the charged surface, and the double layer resembles a flat capacitor, the potential of which depends linearly on the distance between the charged planes.

• 1910, 1913 Gouy and Chapman [Gouy, Phys. 1910, 457-468, Chapman, Phil. Mug. 1913, 475-481] showed that the potential of the electric double layer depends exponentially on its distance from the charged surface.
Every charged surface and its counter-ions in the surrounding solution form an electric double layer.

All counter-ions are ordered in a plane located at a certain distance from the charged surface, and the double layer resembles a flat capacitor, the potential of which depends linearly on the distance between the charged planes.

showed that the potential of the electric double layer depends exponentially on its distance from the charged surface.

: every ion is surrounded by a k^{-1} wide ionic atmosphere.
Fluids

Charges and Electric Fields
SURFACE CHARGES

Fixed Charge Groups on Surface:
1. **Direct ionization or dissociation** of surface chemical groups
2. **Adsorption**
 van der Waals, hydrophobic, or ionic interactions, e.g. lipids, polyelectrolytes (charged polymers)
Net Surface Charge - Fixed Charge Groups on Surface:

1. Direct ionization or dissociation of surface chemical groups
 - weak acid: $\text{COOH} \rightarrow \text{COO}^- + \text{H}^+$ (dependent on pH)

 ![Carboxylic Acid Structure](image)

 - strong acid: sulfate SO_4^{2-} (independent of pH)
 cartilage glycoaminoglycan (chondroitin-6-sulfate)
SURFACE CHARGES

Net Surface Charge - Fixed Charge Groups on Surface:
2- **Adsorption** via:
 - van der Waals,
 - hydrophobic,
 - ionic interactions, e.g. lipids, polyelectrolytes (charged polymers)
Electronic neutrality is maintained:

\[
\text{# of counter ions} = \text{# of surface charge groups} + \text{# of bulk ions}
\]
1859, 1861 **Quinke** [Pog. Ann. 1859, 107, 1-47; and in 1861, 113, 513-598]
Every charged surface and its counter-ions in the surrounding solution form an electric double layer.

1879, 1904 **Helmholtz** and **Perrin**
All counter-ions are ordered in a plane located at a certain distance from the charged surface, and the double layer resembles a flat capacitor, the potential of which depends linearly on the distance between the charged planes.

1910, 1913 **Gouy** and **Chapman** [Gouy, Phys. 1910, 457-468, Chapman, Phil. Mug. 1913, 475-481]
showed that the potential of the electric double layer depends exponentially on its distance from the charged surface.

1923 **Debye** and **Huckel** [Phys. Z. 1923, 185-206]: every ion is surrounded by a k^{-1} wide ionic atmosphere.

1924 **Stern** [Elektrochem. 1924, 508-516] followed Helmholtz and Gouy-Chapman:
some of the counter-ions are fixed to the charged surface, building a D wide adsorption layer, while the rest form a diffuse layer.
Electrostatic Double Layer Repulsion

- Layer thickness is a few Å, reflects the size of the charged surface groups and bound counter ions.
- When two similarly charged electrical double layers are compressed together and overlap (D1<D2), repulsive force occurs.
• Mobile counter ions are in rapid motion,
• Attractive ionic forces pulling them to the surface create concentration gradient
• They gain translational /rotational entropy by moving away from surface
• Diffusion down the concentration gradient \rightarrow these effects are balanced so their is no net flux of any ionic species
For charged particles, this force arises from a diffuse, highly mobile surface layer of counter ions.

An exponential repulsion exists on compression since the counter ions want to retain their translational mobility.
Electrostatic Double Layer Repulsion

- Helmholtz model (1853)
- Guoy-Chapman model (1910-1913)
- Stern model (1924)

\[\Phi_0 \quad \kappa^{-1} \quad X \]
\[\Phi_0 \quad \kappa^{-1} \quad X \]
\[\Phi_0 \quad \xi \quad \kappa^{-1} \quad X \]

(zeta potential)
Zeta Potential

- Electrokinetic potential in a colloidal system
- It is a measure of the stability of the fluid

<table>
<thead>
<tr>
<th>Zeta Potential [mV]</th>
<th>Stability behavior of the colloid</th>
</tr>
</thead>
<tbody>
<tr>
<td>from 0 to ±5</td>
<td>Rapid coagulation or flocculation</td>
</tr>
<tr>
<td>from ±10 to ±30</td>
<td>Incipient instability</td>
</tr>
<tr>
<td>from ±30 to ±40</td>
<td>Moderate stability</td>
</tr>
<tr>
<td>from ±40 to ±60</td>
<td>Good stability</td>
</tr>
<tr>
<td>more than ±61</td>
<td>Excellent stability</td>
</tr>
</tbody>
</table>
Debye Length

\[W(D) = C e^{-\kappa D} \]

Range of the electrostatic interaction \(\sim 5 \kappa^{-1} \)
Debye Length

In pure water (pH=7), screening from H\(^+\) and OH\(^-\)

\[L_D = 1 \, \mu m \]

In KCl (1 mole) in water,

\[L_D = 0.3 \, \text{nm} \]
Electroosmotic Flow

Results is a plug flow

Types of Flow

- Electroosmotic flow velocity is independent of the size, and shape of the channel.

\[V_{EO} = -\frac{\varepsilon \zeta}{\mu} E_z \]

- In a pressure-driven flow, the flow velocity is a function of \(R^2 \).

\[V_{Poi} = -\frac{R^2}{4 \mu L} \Delta P \]
Pressure-driven Flow and Electroosmotic Flow

Applied: Pressure gradient

Applied: Electric Field
Pressure-driven Flow and Electroosmotic Flow

DNA Gel Electrophoresis
DNA Gel Electrophoresis

- DNA has phosphate backbone which is negatively charged – hence DNA drifts in an E-field
DNA Gel Electrophoresis

- DNA has phosphate backbone which is negatively charged – hence DNA drifts in an E-field.
- The field stretches the molecules and they move in a snake-like fashion through the pores of the gel.
DNA Gel Electrophoresis

- DNA has phosphate backbone which is negatively charged – hence DNA drifts in an E-field
- The field stretches the molecules and they move in a snake-like fashion through the pores of the gel.
- μ in gels is inversely proportional to log of fragment size
DNA Gel Electrophoresis

- DNA has phosphate backbone which is negatively charged – hence DNA drifts in an E-field
- The field stretches the molecules and they move in a snake-like fashion through the pores of the gel.
- μ in gels is inversely proportional to log of fragment size
- Separation $\partial L = \partial \mu E t$
DNA Gel Electrophoresis

- DNA has phosphate backbone which is negatively charged – hence DNA drifts in an E-field.
- The field stretches the molecules and they move in a snake-like fashion through the pores of the gel.
- μ in gels is inversely proportional to log of fragment size.
- Separation $\partial L = \partial \mu E t$
- Resolution of separation $N,$ $N = \mu V/2D$
 - D is the diffusion coefficient.
<table>
<thead>
<tr>
<th>MW</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Myosin</td>
</tr>
<tr>
<td>116</td>
<td>β-galactosidase</td>
</tr>
<tr>
<td></td>
<td>Phosphorylase-B</td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Albumin, bovine serum</td>
</tr>
<tr>
<td>55</td>
<td>Glutamic dehydrogenase</td>
</tr>
<tr>
<td>45</td>
<td>Ovalbumin, chicken egg</td>
</tr>
<tr>
<td>36</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>29</td>
<td>Carbonic anhydrase</td>
</tr>
<tr>
<td>24</td>
<td>Trypsinogen</td>
</tr>
<tr>
<td>20</td>
<td>Soybean trypsin inhibitor</td>
</tr>
<tr>
<td>14</td>
<td>α-lactalbumin</td>
</tr>
<tr>
<td>6.5</td>
<td>Aprotinin</td>
</tr>
</tbody>
</table>