CMSC424: Database Design Entity-Relationship Model

Instructor: Amol Deshpande
amol@cs.umd.edu
Outline

- Database Design Process
- Entity-relationship Model (E/R model)
- Converting from E/R to Relational
- Extra slides
Database Design Process

Why?
- Difficult to directly create schemas for complex domains
- Need significant back-and-forth between the developer and the users

Common Steps:
- Initial design: Characterize the data needs of the users, including functional requirements (what types of queries/transactions)
- Choose a data model appropriate for the data needs
- Translate the requirements into a “conceptual schema”
- Logical Design Step: Convert to the logical schema, typically relational
- Physical Design Steps: Decide physical layout of the database

Normalization (covered later) also deals with this issue
Outline

- Database Design Process
- Entity-relationship Model (E/R model)
- Converting from E/R to Relational
- Extra slides
Entity-Relationship Model

- Conceptual schema often done in the E/R Model

Why?
- Why not just use the relational model directly?
 - Relational model too impoverished
 - Hard to understand what’s going on
 - No distinction between different types of entities or relationships
 - Everything is a table
 - Too much detail
- E/R models have an associated diagrammatic representation
 - Easier to work with in the initial design phases
- At the end: easy to convert to a relational schema (almost mechanical)
- Key entities and “relationships” between them, all mixed up.
 - Attributes appearing multiple times
 - Complicated foreign keys
7.5.7 E-R diagram for the University Enterprise

In Figure 7.15, we show an E-R diagram that corresponds to the university enterprise that we have been using thus far in the text. This E-R diagram is equivalent to the textual description of the university E-R model that we saw in Section 7.4, but with several additional constraints, and section now being a weak entity.

In our university database, we have a constraint that each instructor must have exactly one associated department. As a result, there is a double line in Figure 7.15 between instructor and inst_dept, indicating total participation of instructor in inst_dept; that is, each instructor must be associated with a department. Further, there is an arrow from inst_dept to department, indicating that each instructor can have at most one associated department.

![Diagram showing entities and relationships in a university enterprise E-R model](image-url)
Example 1

- Let’s consider an application like AirBnB
- So we have:
 - Properties
 - Owners
 - Customers
 - Stays
Example 2

Draw an E/R diagram for a Pizza shop. Entities to be modeled include: Employees, Drivers, Customers, Different types of Pizzas, etc. The model should be able to keep track of historical orders, i.e., who ordered what when. Customers should be able to place custom pizza orders, by choosing ingredients, picking size, etc.

Write out the relational schema for the below. The double circled attributes indicate multi-valued attributes. This is modeling the information about viewers and what TV shows they watched and when.

<table>
<thead>
<tr>
<th>TV Show</th>
<th>Has</th>
<th>Episode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV Channel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TV Show
- Name
- Start Date
- Genre
- Airs
- Description

TV Channel
- Name
- Number

Episode
- Number
- Time
- Name

Viewer
- SSN
- Name
- Address

Watches
- started-watching
- stopped-watching
Sometimes a relationship associates an entity set to itself

- Need “roles” to distinguish
Weak Entity Sets

- An entity set without enough attributes to have a primary key
- E.g. Section Entity
- Still need to be able to distinguish between weak entities
 - Called “discriminator attributes”: dashed underline
Participation Constraints

- Records the information that any entity in an entity set must participate in at least one relationship of that type.
Specialization/Generalization

Similar to object-oriented programming: allows inheritance etc.

Disjoint vs Overlapping:
No person can be both employee and student

Partial vs Total
There may be “Persons” who are neither employee or student

Different ways to convert to a Relational schema based on the above issues
No relationships allowed between relationships
Suppose we want to record evaluations of a student by a guide on a project
Thoughts...

- Nothing about actual data
 - How is it stored?

- No talk about the query languages
 - How do we access the data?

- Semantic vs Syntactic Data Models
 - Remember: E/R Model is used for conceptual modeling
 - Many conceptual models have the same properties

- They are much more about representing the knowledge than about database storage/querying
Thoughts...

- Basic design principles
 - Faithful
 - Must make sense
 - Satisfies the application requirements
 - Models the requisite domain knowledge
 - If not modeled, lost afterwards
 - Avoid redundancy
 - Potential for inconsistencies
 - Go for simplicity

- Typically an iterative process that goes back and forth
Design Issues

- Entity sets vs attributes
 - Depends on the semantics of the application
 - Consider telephone

![Diagram](image-url)

(a) Instructor entity set with attributes:
- ID
- name
- salary
- phone_number

(b) Instructor entity set with attributes:
- ID
- name
- salary

Relationship set:
- inst_phone
- phone
- phone_number
- location

Figure 7.17 Alternatives for adding phone to the instructor entity set.
Design Issues

- Entity sets vs Relationship sets
 - Consider *takes*

![Diagram](image)

Figure 7.18 Replacement of *takes* by *registration* and two relationship sets
Design Issues

- Entity sets vs attributes
 - Depends on the semantics of the application
 - Consider *telephone*

- Entity sets vs Relationship sets
 - Consider *loan*

- N-ary vs binary relationships
 - Possible to avoid n-ary relationships, but there are some cases where it is advantageous to use them

- It is not an exact science!!
Recap

- **Entity-relationship Model**
 - Intuitive diagram-based representation of domain knowledge, data properties etc...
 - Two key concepts:
 - Entities
 - Relationships
 - We also looked at:
 - Relationship cardinalities
 - Keys
 - Weak entity sets
 - ...
Entity-relationship Model
- No standardized model (as far as I know)
 - You will see different types of symbols/constructs
- Easy to reason about/understand/construct
- Not as easy to implement
 - Came after the relational model, so no real implementation was ever done
 - Mainly used in the design phase
Django: Overview

- Web application framework written in Python
- Uses a Model-Template-View pattern
- Very similar to the Model-View-Controller pattern that others (e.g., Ruby on Rails) use

- The slides we covered are from an old talk on Django by Simon Willison, a co-creator of Django
 - The talk is from 2006, but mostly still seems correct
 - http://www.slideshare.net/simon/the-django-web-application-framework
Project

- Basic skeleton already created for you
- You have to change some of the files
- Separately, generalize the E/R model that is provided