Set 11 Study Questions

1. What is a Java interface?
2. What is polymorphism?
3. Suppose you have an interface called `CanDance`, and three classes (`Student`, `Penguin`, and `Cow`) all of which implement the `CanDance` interface. Also assume that there is a method available with the following prototype:
   ```java
   public static doSquareDance(CanDance a)
   ```

 Decide which of the following code fragments are reasonable:
 a. `CanDance x = new CanDance();`
 b. `CanDance y = new Student();`
 c. `Student z = new CanDance();`
 d. `Student z = new Penguin();`
 e. `CanDance a;
 a = new Student();
 a = new Penguin();
 a = new Cow();`
 f. `Penguin b = new Penguin();
 doSquareDance(b);`
 g. `Student c = new Student();
 doSquareDance(c);`
 h. `Cow d = new Cow();
 doSquareDance(d);`
 i. `CanDance e = new Student();
 doSquareDance(e);`

4.
 a. Write a `Car` class. (Use your imagination.)
 b. Now write an interface called `_CanFixCars_` with two method prototypes:
      ```java
      public void fixFlat(Car c);
      public void fixRadiator(Car c);
      ```
 c. Write three classes: `CSMajor`, `MathMajor`, and `CEMajor`, each of which implements the `_CanFixCars_` interface. Be creative when implementing the methods. How do you think a Math Major would fix a flat tire? 😊
 d. In a separate class, write a static method with the following prototype:
      ```java
      public static fixCar(Car c, CanFixCars repairPerson)
      ```
 The method should somehow determine what is wrong with the car (is it a flat tire, a broken radiator, or something else) and have the repair person fix the car by calling the repair person_s `fixFlat` or `fixRadiator` methods.
e. Finally, write a main method that will create several broken cars, create several students of various kinds, and have the students fix the cars. (I.e.: make several calls to your fixCar method.)

5. What is meant by the term _algorithm_?

6. Name several problems that can be solved with just an algorithm.

7. Name several problems that are too complicated to be solved with just a single algorithm.

8. What is a _use case_? Imagine that you are working on online banking program. Describe several _use cases_ that your program should be able to deal with. (Recall that there are three parts to the description of a _use case_: the pre-conditions, the actions, and the post-conditions.)