Ch. 5.4 Grasp Planning

1. Force Closure and Form Closure

"Form Closure = A sub-class of force closure that doesn’t rely on friction ($\mu = 0$). [Proposition 5.3]"

Form Closure implies Force Closure.

Assumptions about the object O:

- Rigid solid
- Exactly known geometry
- "Regular:" Constructive solid geometry (closed, compact) where O is the closure of its interior ("well-behaved" objects)
- $O \subseteq \mathbb{R}^3$

Let the object coordinate frame $\{O\}$ origin be at center of mass.

Let $\Sigma = \partial(O)$ be the boundary of O – connected, piecewise smooth.

Given a set of n contact points $C = \{c_i\} i = 1 \ldots n c_i \in \Sigma$

Let $\Lambda(\Sigma)$ be the set of wrenches that can be applied to O with frictionless point contacts ($\mu = 0$)

$p_{ci} =$ location of c_i in $\{O\}$

$n_{ci} =$ inward normal at c_i
\[\Lambda(\Sigma) = \left\{ \left[p_{cl} \times n_{cl} \right] \right\} \]

\(F(O, C) \) is true if C puts O into Form/Force Closure

If the convex hull of \(\Lambda(\Sigma) \) contains the origin \(\{O\} \), then \(F(O, C) \).

Also, let \(p \) be the *dimension of the wrench space*, \(\mathbb{R}^p \).

- \(p = 3 \) in the plane
- \(p = 6 \) in space (3D)

Therefore, *if \(\Lambda(\Sigma) \) positively spans \(\mathbb{R}^p \), then \(F(O, C) \).*

Exceptional Surface:

Object \(O \) with boundary \(\partial(O) \) such that it cannot be grasped (without friction).

Examples: sphere, circle, cylinder, etc.

\[\neg \exists \subset F(O, C) \]

II. Grasp Planning in the Plane (\(\mu = 0 \)) – Geometric Intuition
\(\mathcal{F}(O, C) \)?

Analysis: Given O, C: is \(\mathcal{F}(O, C) \) true?

Synthesis: Given O, find C such that \(\mathcal{F}(O, C) \) is true.

I. **Rigid Body Motion:**

\[
\xi = \begin{bmatrix} 2y \\ -2x \\ 1 \end{bmatrix} \quad \text{(pure rotation)} \quad \text{or} \quad \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix} \quad \text{(pure translation)}.
\]

Pure translation:

Intersection at \(\infty \).
II. **Frictionless point contact: constraints on ξ**

Define $\text{sgn}(\xi) = \begin{cases}
+1 & \text{if } \theta > 0 \\
0 & \text{if pure translation} \\
-1 & \text{if } \theta < 0
\end{cases}$

III. **Rotation Center Locus: Multiple (frictionless) Contacts**:
C = \{c_1, c_2, c_3, c_4\}

Let \(\Xi = \{\xi_i\} \)

If \(\Xi = \emptyset \): \(\mathcal{F}(O, C) \)

To eliminate the locus: place \(p_4 \) anywhere on the jagged edges.

Are 3 contacts enough?

Is O in form closure? **No**: The locus is a point with \(\text{sgn}(p) = \pm 1 \), so there is *infinitesimal* rotation.

\[\therefore \text{Need} \geq 4 \text{ contacts in the plane.} \]

So far, we haven’t been allowing contacts on the corners.

Contacts at concave vertices \(\rightarrow \) very important, there is a lot of constraint there.
2nd Order Form Closure:

IV. \textbf{Number of Required Contacts:}

Given a set of vectors $X = \{v_1, \ldots, v_k\}$, X positively spans \mathbb{R}^p if and only if $\text{co}(X)$ [Convex-hull of X] contains a neighborhood of the origin (pg. 255).

\textbf{Theorem 5.4: (Caratheodory) 1911 (Greek)}

At least $p+1$ vectors are necessary to positively span \mathbb{R}^p.

For $p = 2$: $\forall \ v_1, v_2: -(v_1 + v_2)$ is outside the positive span of v_1, v_2
Theorem 5.5: (Steinitz – Jewish German)

Given a set of vectors that positively span \(\mathbb{R}^p \), \(\exists \) a subset of 2p or Fewer sufficient to positively span \(\mathbb{R}^p \).

Recall: \(p \) = dimension of the wrench space

<table>
<thead>
<tr>
<th>Space</th>
<th>Object type</th>
<th>Lower</th>
<th>Upper</th>
<th>FPC</th>
<th>PCWF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar ((p = 3))</td>
<td>Exceptional</td>
<td>4</td>
<td>6</td>
<td>n/a</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Non-exceptional</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Spatial ((p = 6))</td>
<td>Exceptional</td>
<td>7</td>
<td>12</td>
<td>n/a</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Non-exceptional</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Polyhedral</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

V. **Grasp planning in the plane \((\mu > 0)\)**

2 point contacts with friction (2PCWF) in plane.

Define **grasp axis**: \([p_1 - p_2]\)

\[
\tan(\alpha) = \mu
\]
Theorem 5.6: PCWF

G is in FC if and only if the grasp axis lies strictly inside both friction cones. [Nguyen ‘88]

(Related to Def. 5.2, Prop. 5.1, 5.2, 5.3)

Extends to 2 point contacts with friction in 3D.

Theorem 5.7: Check both contacts individually. [Nguyen ‘88]

Check 1: Is \(c_1 \) inside Friction Cone 2?

Check 2: Contact 1 is stable if \(\frac{d_{n_2}}{d_{\mu_2}} < \mu \).

If both are stable, \(F(O, C) \).

i.e. Don’t need to approximate the friction cone.
VI. **Grasp Planning with Uncertainty (in Pose) in the Plane**

Assume: Known object

Pose: Not known precisely

Parallel-Jaw Gripper (pg. 11 Problem)

Dr. Ken Goldberg

Convex hull of O

Radius Function and Diameter Function:

Squeeze function $s, s' \rightarrow s'$

Piecewise constant monotone step function

θ_x where θ_x is leftmost point

Symmetry in object \rightarrow periodicity \rightarrow aliasing