Sample Solutions for Assignment 3.

Reading: Lectures 6-8 in the text.

$I - 2P$ is unitary since $(I - 2P)^*(I - 2P) = I - 2P - 2P^* + 4P^*P = I$, where the last equality follows because $P = P^*$ and $P = P^2$. Geometrically, $(I - P)v$ is a vector orthogonal to the subspace onto which P projects, and $(I - 2P)v$ is the reflection of v through the subspace orthogonal to the range of P.

(a)

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The columns of A are orthogonal and if we normalize the first column by dividing by $\sqrt{2}$, then they are orthonormal. Thus the orthogonal projector P onto the range of A is

$$P = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 1 \\ 1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}.$$

The image of the vector $(1, 2, 3)^*$ is

$$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.$$

(b)

$$B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

An orthonormal basis for the range of B is $(1/\sqrt{2}, 0, 1/\sqrt{2})^T$, $(1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3})^T$. Hence the orthogonal projector P onto the range of B is

$$P = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} \\ 0 & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{3} \end{bmatrix} = \begin{bmatrix} 5/6 & 1/3 & 1/6 \\ 1/3 & 1/3 & -1/3 \\ 1/6 & -1/3 & 5/6 \end{bmatrix}.$$
The image of the vector \((1, 2, 3)^*\) is
\[
\begin{bmatrix}
2 \\
0 \\
2
\end{bmatrix}.
\]

(a) Since the columns of \(A\) are already orthogonal, all we have to do is normalize to get the reduced QR factorization:
\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
\sqrt{2}/2 & 0 \\
0 & 1 \\
\sqrt{2}/2 & 0
\end{bmatrix} \begin{bmatrix}
\sqrt{2} \\
0 \\
1
\end{bmatrix} \equiv \hat{Q}\hat{R}.
\]

To get the full QR factorization, append a vector to \(\hat{Q}\) that is orthogonal to both columns of \(\hat{Q}\) and has norm 1, and append a row of zeros to \(\hat{R}\):
\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
\sqrt{2}/2 & 0 & \sqrt{2}/2 \\
0 & 1 & 0 \\
\sqrt{2}/2 & 0 & -\sqrt{2}/2
\end{bmatrix} \begin{bmatrix}
\sqrt{2} \\
0 \\
1
\end{bmatrix} \equiv QR.
\]

(b) Using Gram-Schmidt orthogonalization, start by normalizing the first column:
\[
q_1 = \begin{bmatrix}
\sqrt{2}/2 \\
0 \\
\sqrt{2}/2
\end{bmatrix}, \quad r_{11} = \sqrt{2}.
\]

Now orthogonalize the second column against \(q_1\):
\[
\tilde{q}_2 = \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix} - \sqrt{2} \begin{bmatrix}
\sqrt{2}/2 \\
0 \\
\sqrt{2}/2
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
-1
\end{bmatrix}, \quad r_{12} = \sqrt{2}.
\]

Finally, normalize to get \(q_2\):
\[
q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|} = \begin{bmatrix}
\sqrt{3}/3 \\
\sqrt{3}/3 \\
-\sqrt{3}/3
\end{bmatrix}, \quad r_{22} = \sqrt{3}.
\]

Thus the reduced QR factorization is:
\[
\begin{bmatrix}
1 & 2 \\
0 & 1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
\sqrt{2}/2 & \sqrt{3}/3 & -\sqrt{6}/6 \\
0 & \sqrt{3}/3 & \sqrt{6}/3 \\
\sqrt{2}/2 & -\sqrt{3}/3 & \sqrt{6}/6
\end{bmatrix} \begin{bmatrix}
\sqrt{2} \\
\sqrt{2} \\
\sqrt{3}
\end{bmatrix} \equiv \hat{Q}\hat{R}.
\]

To get the full QR factorization, append a vector to \(\hat{Q}\) that is orthogonal to both columns of \(\hat{Q}\) and has norm 1, and append a row of zeros to \(\hat{R}\):
\[
\begin{bmatrix}
1 & 2 \\
0 & 1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
\sqrt{2}/2 & \sqrt{3}/3 & -\sqrt{6}/6 \\
0 & \sqrt{3}/3 & \sqrt{6}/3 \\
\sqrt{2}/2 & -\sqrt{3}/3 & \sqrt{6}/6
\end{bmatrix} \begin{bmatrix}
\sqrt{2} \\
\sqrt{2} \\
0
\end{bmatrix} \equiv QR.
(a) If all of the diagonal entries of \(\hat{R} \) are nonzero, then \(\hat{R} \) is nonsingular and \(A\hat{R}^{-1} = \hat{Q} \). Thus, each of the \(n \) columns of \(\hat{Q} \) lies in the range of \(A \), and since these columns are linearly independent, the rank of \(A \) is at least \(n \). The rank of \(A \) cannot be greater than \(n \) because for any vector \(x \), \(Ax = \hat{Q}\hat{R}x \), which is a linear combination of the columns of \(\hat{Q} \). Thus, when all diagonal entries of \(\hat{R} \) are nonzero, the range of \(A \) is the span of the columns of \(\hat{Q} \) and the rank of \(A \) is \(n \).

If some diagonal entry of \(\hat{R} \), say \(\hat{r}_{jj} \) is 0 (and is the first 0 on the diagonal of \(\hat{R} \)), then column \(j \) of \(A \) is a linear combination of columns 1 through \(j - 1 \). To see this, note that if \(e_j \) is the \(j \)th unit vector, then \(Ae_j = \hat{Q}\hat{R}e_j \) is a linear combination of columns 1 through \(j - 1 \) of \(\hat{Q} \); i.e., a linear combination of columns 1 through \(j - 1 \) of \(A \). Since the columns of \(A \) are not linearly independent, it must have rank less than \(n \).

(b) Suppose \(\hat{R} \) has \(k \) nonzero diagonal entries. The columns of \(A \) corresponding to the nonzero diagonal entries of \(\hat{R} \) are linearly independent. If, say, \(\hat{r}_{ss} \) and \(\hat{r}_{tt}, t > s \), are two such nonzero entries, then \(Ae_s = \hat{Q}\hat{R}e_s \) is a linear combination of columns 1 through \(s \) of \(\hat{Q} \), while \(Ae_t = \hat{Q}\hat{R}e_t \) is a linear combination of columns 1 through \(t \) of \(\hat{Q} \), with the coefficient of \(q_t \) being nonzero. Thus, it is independent of any linear combination of \(q_1, \ldots, q_s \). Therefore the rank of \(A \) is at least \(k \). The rank of \(A \) could be greater than \(k \), however. Suppose column \(j \) of \(A \) is the first column that is a linear combination of previous columns; i.e., of \(q_1, \ldots, q_{j-1} \). Thus \(r_{jj} = 0 \). We introduce an arbitrary vector \(q_j \) that is orthogonal to \(q_1, \ldots, q_{j-1} \). Now suppose column \(j + 1 \) of \(A \) is not a linear combination of \(q_1, \ldots, q_{j-1} \) (so that the rank of \(A \) is at least \(j \)) but is a linear combination of \(q_1, \ldots, q_j \). Then the diagonal entry \(r_{j+1,j+1} \) will be 0. Thus we have two zero diagonal entries, \(j - 1 \) nonzero diagonal entries, but the rank of the first \(j + 1 \) columns is \(j \). The argument can be repeated for other columns. Column \(j + 2 \) might be independent of \(q_1, \ldots, q_j \), but if it is a linear combination of \(q_1, \ldots, q_j \) and the arbitrarily chosen new column \(q_{j+1} \), then the diagonal entry \(r_{j+2,j+2} \) will be zero as well, even though the rank of the first \(j + 2 \) columns is \(j + 1 \).

As a simple example, take

\[
A = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \ddots & \ddots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{bmatrix}
\]

\(A \) is already upper triangular, so its reduced QR factorization is \(A = I \cdot A \). If \(A \) is \(m \times n \) with \(n \leq m \), then it has rank \(n - 1 \) but only one nonzero
The inner product $q_i^* v_j$ in the innermost loop requires m multiplications and
$m - 1$ additions. The next line, $v_j = v_j - r_{ij} q_i$, requires m multiplications
and m subtractions. Thus, $4m - 1$ operations are performed in each of the
$(n - i)$ passes through the innermost loop. Outside that loop, but inside
the loop over i, we compute the norm of a vector, which requires an inner
product (of the vector with itself) and a square root, or $(2m - 1) + 1 = 2m$
operations. We also do m divisions, giving a total of $3m$ operations. Thus,
the total number of operations for Algorithm 8.1 is

$$\sum_{i=1}^{n} \left[3m + \sum_{j=i+1}^{n} (4m - 1) \right] = \sum_{i=1}^{n} [3m + (4m - 1)(n - i)] = 3mn + (4m - 1) \sum_{i=1}^{n} (n - i)$$

$$= 3mn + (4m - 1) \frac{n(n - 1)}{2} = 2mn^2 + mn - \frac{1}{2} n^2 + \frac{1}{2} n.$$