Quickie Statistics Summary

If \(N \) independent measurements are made of some quantity \(x \) and experimental conditions are not changed between measurements (the measurements are said to be drawn from the same parent distribution and constitute a sample population) then the best estimate of the "true" mean of \(x \) (the mean obtained as \(N \to \infty \)) is the mean of the sample population.

Mean (Bevington and Robinson, *Data Reduction and Error Analysis* (BR) p.9)

\[
\bar{x} = \frac{1}{N} \sum_{1}^{N} x_n
\]

In this expression it is assumed that all \(N \) values \(x_n \) have the same uncertainty \(\sigma_n \). In some instances this may not be true and \(\sigma_n \) will differ from measurement to measurement. If this is the case, the best estimate of the mean is the weighted mean (BR p.57)

\[
\bar{x} = \frac{\sum_{1}^{N} w_n x_n}{\sum_{1}^{N} w_n}
\]

where the weights \(w_n = \frac{1}{\sigma_n^2} \)

Variances

For the case of equal uncertainties, an unbiased estimate of \(\sigma_n^2 \), the variance of an individual measurement of a sample of \(N \) measurements is (BR p.11 and p.54)

\[
\sigma_n^2 = \frac{1}{N-1} \sum_{1}^{N} (x_n - \bar{x})^2,
\]

and the variance in the mean of a sample of \(N \) measurements, \(\sigma_{\bar{x}}^2 \), is (BR p.54)

\[
\sigma_{\bar{x}}^2 = \frac{1}{N} \sigma_n^2
\]

This important result states that the uncertainty in the mean of \(N \) measurements decreases like \(\frac{1}{\sqrt{N}} \). For the case in which the individual variances are not equal, the variance in the mean is given by (BR p. 57)
\[\frac{1}{\sigma_x^2} = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \]

In general, the quantity reported for a measurement will be \(\bar{x} \pm \sigma_{\bar{x}} \). If the parent distribution is a normal (Gaussian BR pp. 27-30) distribution, the most common case, then the true mean will be within the range \(\bar{x} \pm \sigma_{\bar{x}} \) 68\% of the time. Stated in other terms, if the set of \(N \) measurements is repeated, 68\% of the time the mean obtained in the second set will lie within the range \(\bar{x} \pm \sigma_{\bar{x}} \).

Propagation of Errors

When the quantity being measured, let's call it \(u \), is some combination of independent quantities which we will call \(x, y, z, \ldots \), \(u = u(x, y, z, \ldots) \), there is a simple general rule for calculating the uncertainty in \(u \), \(\sigma_u \), given the uncertainties \(\sigma_x, \sigma_y, \sigma_z, \ldots \) in \(x, y, z, \ldots \). This is

\[
\sigma_u^2 = \left(\frac{\partial u}{\partial x} \right)_{x,y,z}^2 \sigma_x^2 + \left(\frac{\partial u}{\partial y} \right)_{x,y,z}^2 \sigma_y^2 + \left(\frac{\partial u}{\partial z} \right)_{x,y,z}^2 \sigma_z^2 + \ldots
\]

Two examples of this rule are of particular interest. The first is the situation in which \(u \) is the sum or difference of the quantities \(x, y, z, \ldots \), for example, \(u = x + y - z \). The partial derivatives of \(u \) with respect to \(x, y \) and \(z \) are either +1 or -1 so the expression for the uncertainty of \(u \) reduces to (BR p.42)

\[
\sigma_u^2 = \sigma_x^2 + \sigma_y^2 + \sigma_z^2
\]

The square of the uncertainty of \(u \) is the sum of the squares of the uncertainties of \(x, y, \) and \(z \).

The second example is that in which \(u \) can be expressed as the product and/or quotient of \(x, y, \) and \(z \), for example, \(u = \frac{xy}{z} \). It is a simple matter to show that the general expression reduces in this case to (BR p. 43)

\[
\left(\frac{\sigma_u}{u} \right)^2 = \left(\frac{\sigma_x}{x} \right)^2 + \left(\frac{\sigma_y}{y} \right)^2 + \left(\frac{\sigma_z}{z} \right)^2
\]
Thus the square of the fractional (or relative) uncertainly in u, $\frac{\sigma_u}{u}$, is the sum of the squares of the fractional (or relative) uncertainties in x, y, and z.

For both of the examples above, if the uncertainty in one of the quantities x, y, or z is several times that of the uncertainties in the other quantities it dominates the uncertainty in u. For example, if the uncertainty is x is twice that in y and z, $\sigma_x = 2\sigma_y = 2\sigma_z$, the uncertainty in x contributes 82% of the uncertainty in u.