Bush, Vannevar. 1945. ‘Science, the Endless Frontier: a report to the President’ Transactions of the Kansas Academy of Science (1903-), Vol. 48, No. 3. (Dec., 1945), (pp.231-264), pp.231-239
Science—The Endless Frontier*

VANNEVAR BUSH

Director, U. S. Office of Scientific Research and Development

On November 17, 1944, President Roosevelt requested recommendations from Dr. Bush on the following points:

1. What can be done, consistent with military security, and with the prior approval of the military authorities, to make known to the world as soon as possible the contributions which have been made during our war effort to scientific knowledge?

2. With particular reference to the war of science against disease, what can be done now to organize a program for continuing in the future the work which has been done in medicine and related sciences?

3. What can the Government do now and in the future to aid research activities by public and private organizations?

4. Can an effective program be proposed for discovering and developing scientific talent in American youth so that the continuing future of scientific research in this country may be assured on a level comparable to what has been done during the war?

In order to answer these questions, four advisory committees were appointed to gather information and to consider the problems involved. In July, 1945, Dr. Bush, after considering the individual committee reports, prepared his answers to the questions raised by President Roosevelt and submitted his recommendations to President Truman; the resulting document, save for minor editorial changes, is the article presented herewith. The editor believes that it may well become a landmark in American scientific history and as such is worthy of the consideration of all citizens, especially those of the scientific profession.

For further information concerning the author, the advisory committee reports and the present status of legislation based on Dr. Bush's recommendations, see page 265.—The Editor.

INTRODUCTION

Scientific Progress Is Essential.—We all know how much the new drug, penicillin, has meant to our grievously wounded men on the grim battlefronts of this war—the countless lives it has saved—

*Reprinted from the report of the same title, Science—The Endless Frontier, Washington, 1945, pages 5-34. It will be obvious to the reader that the report was prepared before news of the atomic bomb was released to the public.
the incalculable suffering which its use has prevented. Science and
the great practical genius of this nation made this achievement pos-
sible.

Some of us know the vital role which radar has played in bring-
ing the United Nations to victory over Nazi Germany and in driving
the Japanese steadily back from their island bastions. Again it was
painstaking scientific research over many years that made radar
possible.

What we often forget are the millions of pay envelopes on a
peacetime Saturday night which are filled because new products and
new industries have provided jobs for countless Americans. Science
made that possible, too.

In 1939 millions of people were employed in industries which
did not even exist at the close of the last war—radio, air condition-
ing, rayon and other synthetic fibers, and plastics are examples of
the products of these industries. But these things do not mark the
end of progress—they are but the beginning if we make full use of
our scientific resources. New manufacturing industries can be
started and many older industries greatly strengthened and expand-
ed if we continue to study nature's laws and apply new knowledge to
practical purposes.

Great advances in agriculture are also based upon scientific re-
search. Plants which are more resistant to disease and are adapted
to short growing seasons, the prevention and cure of livestock dis-
eases, the control of our insect enemies, better fertilizers, and im-
proved agricultural practices, all stem from painstaking scientific
research.

Advances in science when put to practical use mean more jobs,
higher wages, shorter hours, more abundant crops, more leisure for
recreation, for study, for learning how to live without the deaden-
ing drudgery which has been the burden of the common man for
ages past. Advances in science will also bring higher standards of
living, will lead to the prevention or cure of diseases, will promote
conservation of our limited national resources, and will assure means
of defense against aggression. But to achieve these objectives—to
secure a high level of employment, to maintain a position of world
leadership—the flow of new scientific knowledge must be both con-
tinuous and substantial.

Our population increased from 75 million to 130 million be-
tween 1900 and 1940. In some countries comparable increases have
been accompanied by famine. In this country the increase has been
accompanied by more abundant food supply, better living, more leisure, longer life, and better health. This is, largely, the product of three factors—the free play of initiative of a vigorous people under democracy; the heritage of great natural wealth, and the advance of science and its application.

Science, by itself, provides no panacea for individual, social, and economic ills. It can be effective in the national welfare only as a member of a team, whether the conditions be peace or war. But without scientific progress no amount of achievement in other directions can insure our health, prosperity, and security as a nation in the modern world.

Science Is a Proper Concern of Government.—It has been basic United States policy that Government should foster the opening of new frontiers. It opened the seas to clipper ships and furnished land for pioneers. Although these frontiers have more or less disappeared, the frontier of science remains. It is in keeping with the American tradition—one which has made the United States great—that new frontiers shall be made accessible for development by all American citizens.

Moreover, since health, well-being, and security are proper concerns of Government, scientific progress is, and must be, of vital interest to Government. Without scientific progress the national health would deteriorate; without scientific progress we could not hope for improvement in our standard of living or for an increased number of jobs for our citizens; and without scientific progress we could not have maintained our liberties against tyranny.

Government Relations to Science—Past and Future.—From early days the Government has taken an active interest in scientific matters. During the nineteenth century the Coast and Geodetic Survey, the Naval Observatory, the Department of Agriculture, and the Geological Survey were established. Through the Land Grant College Acts the Government has supported research in state institutions for more than 80 years on a gradually increasing scale. Since 1900 a large number of scientific agencies have been established within the Federal Government, until in 1939 they numbered more than 40.

Much of the scientific research done by Government agencies is intermediate in character between the two types of work commonly referred to as basic and applied research. Almost all Government scientific work has ultimate practical objectives but, in many fields of broad national concern, it commonly involves long-term investiga-
tion of a fundamental nature. Generally speaking, the scientific agencies of Government are not so concerned with immediate practical objectives as are the laboratories of industry nor, on the other hand, are they as free to explore any natural phenomena without regard to possible economic applications as are the educational and private research institutions. Government scientific agencies have splendid records of achievement, but they are limited in function.

We have no national policy for science. The Government has only begun to utilize science in the nation's welfare. There is no body within the Government charged with formulating or executing a national science policy. There are no standing committees of the Congress devoted to this important subject. Science has been in the wings. It should be brought to the center of the stage—for in it lies much of our hope for the future.

There are areas of science in which the public interest is acute but which are likely to be cultivated inadequately if left without more support than will come from private sources. These areas—such as research on military problems, agriculture, housing, public health, certain medical research, and research involving expensive capital facilities beyond the capacity of private institutions—should be advanced by active Government support. To date, with the exception of the intensive war research conducted by the Office of Scientific Research and Development, such support has been meager and intermittent.

For reasons presented in this report we are entering a period when science needs and deserves increased support from public funds.

Freedom of Inquiry Must Be Preserved.—The publicly and privately supported colleges, universities, and research institutes are the centers of basic research. They are the wellsprings of knowledge and understanding. As long as they are vigorous and healthy and their scientists are free to pursue the truth wherever it may lead, there will be a flow of new scientific knowledge to those who can apply it to practical problems in Government, in industry, or elsewhere.

Many of the lessons learned in the war-time application of science under Government can be profitably applied in peace. The Government is peculiarly fitted to perform certain functions, such as the coordination and support of broad programs on problems of great national importance. But we must proceed with caution in carrying over the methods which work in wartime to the very dif-
ferent conditions of peace. We must remove the rigid controls which we have had to impose, and recover freedom of inquiry and that healthy competitive scientific spirit so necessary for expansion of the frontiers of scientific knowledge.

Scientific progress on a broad front results from the free play of free intellects, working on subjects of their own choice, in the manner dictated by their curiosity for exploration of the unknown. Freedom of inquiry must be preserved under any plan for Government support of science in accordance with the Five Fundamentals listed on page 255.

The study of the momentous questions presented in President Roosevelt’s letter has been made by able committees working diligently. This report presents conclusions and recommendations based upon the studies of these committees which appear in full as the appendices. Only in the creation of one over-all mechanism rather than several does this report depart from the specific recommendations of the committees. The members of the committees have reviewed the recommendations in regard to the single mechanism and have found this plan thoroughly acceptable.

THE WAR AGAINST DISEASE

In War.—The death rate for all diseases in the Army, including the overseas forces, has been reduced from 14.1 per thousand in the last war to 0.6 per thousand in this war.

Such ravaging diseases as yellow fever, dysentery, typhus, tetanus, pneumonia, and meningitis have been all but conquered by penicillin and the sulfa drugs, the insecticide DDT, better vaccines, and improved hygienic measures. Malaria has been controlled. There has been dramatic progress in surgery.

The striking advances in medicine during the war have been possible only because we had a large backlog of scientific data accumulated through basic research in many scientific fields in the years before the war.

In Peace.—In the last 40 years life expectancy in the United States has increased from 49 to 65 years largely as a consequence of the reduction in the death rates of infants and children; in the last 20 years the death rate from the diseases of childhood has been reduced 87 percent.

Diabetes has been brought under control by insulin, pernicious anemia by liver extracts; and the once widespread deficiency dis-
eases have been much reduced, even in the lowest income groups, by accessory food factors and improvement of diet. Notable advances have been made in the early diagnosis of cancer, and in the surgical and radiation treatment of the disease.

These results have been achieved through a great amount of basic research in medicine and the preclinical sciences, and by the dissemination of this new scientific knowledge through the physicians and medical services and public health agencies of the country. In this cooperative endeavour the pharmaceutical industry has played an important role, especially during the war. All of the medical and public health groups share credit for these achievements; they form interdependent members of a team.

Progress in combating disease depends upon an expanding body of new scientific knowledge.

Unsolved Problems.—As President Roosevelt observed, the annual deaths from one or two diseases are far in excess of the total number of American lives lost in battle during this war. A large fraction of these deaths in our civilian population cut short the useful lives of our citizens. This is our present position despite the fact that in the last three decades notable progress has been made in civilian medicine. The reduction in death rate from diseases of childhood has shifted the emphasis to the middle and old age groups, particularly to the malignant diseases and the degenerative processes prominent in later life. Cardiovascular disease, including chronic disease of the kidneys, arteriosclerosis, and cerebral hemorrhage, now account for 45 percent of the deaths in the United States. Second are the infectious diseases, and third is cancer. Added to these are many maladies (for example, the common cold, arthritis, asthma and hay fever, peptic ulcer) which, though infrequently fatal, cause incalculable disability.

Another aspect of the changing emphasis is the increase of mental diseases. Approximately 7 million persons in the United States are mentally ill; more than one-third of the hospital beds are occupied by such persons, at a cost of $175 million a year. Each year 125,000 new mental cases are hospitalized.

Notwithstanding great progress in prolonging the span of life and in relief of suffering, much illness remains for which adequate means of prevention and cure are not yet known. While additional physicians, hospitals, and health programs are needed, their full usefulness cannot be attained unless we enlarge our knowledge of the human organism and the nature of disease. Any extension of
medical facilities must be accompanied by an expanded program of medical training and research.

Broad and Basic Studies Needed.—Discoveries pertinent to medical progress have often come from remote and unexpected sources, and it is certain that this will be true in the future. It is wholly probably that progress in the treatment of cardiovascular disease, renal disease, cancer, and similar refractory diseases will be made as the result of fundamental discoveries in subjects unrelated to those diseases, and perhaps entirely unexpected by the investigator. Further progress requires that the entire front of medicine and the underlying sciences of chemistry, physics, anatomy, biochemistry, physiology, pharmacology, bacteriology, pathology, parasitology, etc., be broadly developed.

Progress in the war against disease results from discoveries in remote and unexpected fields of medicine and the underlying sciences.

Coordinated Attack on Special Problems.—Penicillin reached our troops in time to save countless lives because the Government coordinated and supported the program of research and development on the drug. The development moved from the early laboratory stage to large scale production and use in a fraction of the time it would have taken without such leadership. The search for better anti-malarials, which proceeded at a moderate tempo for many years, has been accelerated enormously by Government support during the war. Other examples can be cited in which medical progress has been similarly advanced. In achieving these results, the Government has provided over-all coordination and support; it has not dictated how the work should be done within any cooperating institution.

Discovery of new therapeutic agents and methods usually results from basic studies in medicine and the underlying sciences. The development of such materials and methods to the point at which they become available to medical practitioners requires teamwork involving the medical schools, the science departments of universities, Government and the pharmaceutical industry. Government initiative, support, and coordination can be very effective in this development phase.

Government initiative and support for the development of newly discovered therapeutic materials and methods can reduce the time required to bring the benefits to the public.
Action is Necessary.—The primary place for medical research is in the medical schools and universities. In some cases coordinated direct attack on special problems may be made by teams of investigators, supplementing similar attacks carried on by the Army, Navy, Public Health Service, and other organizations. Apart from teaching, however, the primary obligation of the medical schools and universities is to continue the traditional function of such institutions, namely, to provide the individual worker with an opportunity for free, untrammeled study of nature, in the directions and by the methods suggested by his interests, curiosity, and imagination. The history of medical science teaches clearly the supreme importance of affording the prepared mind complete freedom for the exercise of initiative. It is the special province of the medical schools and universities to foster medical research in this way—a duty which cannot be shifted to government agencies, industrial organizations, or to any other institutions.

Where clinical investigations of the human body are required, the medical schools are in a unique position, because of their close relationship to teaching hospitals, to integrate such investigations with the work of the departments of preclinical science, and to impart new knowledge to physicians in training. At the same time, the teaching hospitals are especially well qualified to carry on medical research because of their close connection with the medical schools, on which they depend for staff and supervision.

Between World War I and World War II the United States overtook all other nations in medical research and assumed a position of world leadership. To a considerable extent this progress reflected the liberal financial support from university endowment income, gifts from individuals, and foundation grants in the 20's. The growth of research departments in medical schools has been very uneven, however, and in consequence most of the important work has been done in a few large schools. This should be corrected by building up the weaker institutions, especially in regions which now have no strong medical research activities.

The traditional sources of support for medical research, largely endowment income, foundation grants, and private donations, are diminishing, and there is no immediate prospect of a change in this trend. Meanwhile, research costs have steadily risen. More elaborate and expensive equipment is required, supplies are more costly, and the wages of assistants are higher. Industry is only to a limited extent a source of funds for basic medical research.
It is clear that if we are to maintain the progress in medicine, which has marked the last 25 years, the Government should extend financial support to basic medical research in the medical schools and in the universities, through grants both for research and for fellowships. The amount which can be effectively spent in the first year should not exceed 5 million dollars. After a program is under way perhaps 20 million dollars a year can be spent effectively.

SCIENCE AND THE PUBLIC WELFARE

Relation to National Security.—In this war it has become clear beyond all doubt that scientific research is absolutely essential to national security. The bitter and dangerous battle against the U-boat was a battle of scientific techniques—and our margin of success was dangerously small. The new eyes which radar supplied to our fighting forces quickly evoked the development of scientific countermeasures which could often blind them. This again represents the ever continuing battle of techniques. The V-1 attack on London was finally defeated by three devices developed during this war and used superbly in the field. V-2 was countered only by capture of the launching sites.

The Secretaries of War and Navy recently stated in a joint letter to the National Academy of Sciences:

This war emphasizes three facts of supreme importance to national security: (1) Powerful new tactics of defense and offense are developed around new weapons created by scientific and engineering research; (2) the competitive time element in developing those weapons and tactics may be decisive; (3) war is increasingly total war, in which the armed services must be supplemented by active participation of every element of civilian population.

To insure continued preparedness along farsighted technical lines, the research scientists of the country must be called upon to continue in peacetime some substantial portion of those types of contribution to national security which they have made so effectively during the stress of the present war.

There must be more—and more adequate—military research during peacetime. We cannot again rely on our allies to hold off the enemy while we struggle to catch up. Further, it is clear that only the Government can undertake military research; for it must be carried on in secret, much of it has no commercial value, and it is expensive. The obligation of Government to support research on military problems is inescapable.

Modern war requires the use of the most advanced scientific techniques. Many of the leaders in the development of radar are scientists who before the war had been exploring the nucleus of the atom. While there must be increased emphasis on science in the